Abstract In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.
more »
« less
Thawing permafrost is subsiding in the Northern Hemisphere—review and perspectives
Abstract High-latitude and altitude cold regions are affected by climate warming and permafrost degradation. One of the major concerns associated with degrading permafrost is thaw subsidence (TS) due to melting of excess ground ice and associated thaw consolidation. Field observations, remote sensing, and numerical modeling are used to measure and estimate the extent and rates of TS across broad spatial and temporal scales. Our new data synthesis effort from diverse permafrost regions of North America and Eurasia, confirms widespread TS across the panarctic permafrost domain with rates of up to 2 cm yr−1in the areas with low ice content and more than 3 cm yr−1in regions with ice-rich permafrost. Areas with human activities or areas affected by wildfires exhibited higher subsidence rates. Our findings suggest that permafrost landscapes are undergoing geomorphic change that is impacting hydrology, ecosystems, and human infrastructure. The development of a systematic TS monitoring is urgently needed to deliver consistent and continuous exchange of data across different permafrost regions. Integration of coordinated field observations, remote sensing, and modeling of TS across a range of scales would contribute to better understanding of rapidly changing permafrost environments and resulting climate feedbacks.
more »
« less
- PAR ID:
- 10565335
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1748-9326
- Format(s):
- Medium: X Size: Article No. 013006
- Size(s):
- Article No. 013006
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The 2015 spring flood of the Sagavanirktok River inundated large swaths of tundra as well as infrastructure near Prudhoe Bay, Alaska. Its lasting impact on permafrost, vegetation, and hydrology is unknown but compels attention in light of changing Arctic flood regimes. We combined InSAR and optical satellite observations to quantify subdecadal permafrost terrain changes and identify their controls. While the flood locally induced quasi‐instantaneous ice‐wedge melt, much larger areas were characterized by subtle, spatially variable post‐flood changes. Surface deformation from 2015 to 2019 estimated from ALOS‐2 and Sentinel‐1 InSAR varied substantially within and across terrain units, with greater subsidence on average in flooded locations. Subsidence exceeding 5 cm was locally observed in inundated ice‐rich units and also in inactive floodplains. Overall, subsidence increased with deposit age and thus ground ice content, but many flooded ice‐rich units remained stable, indicating variable drivers of deformation. On average, subsiding ice‐rich locations showed increases in observed greenness and wetness. Conversely, many ice‐poor floodplains greened without deforming. Ice wedge degradation in flooded locations with elevated subsidence was mostly of limited intensity, and the observed subsidence largely stopped within 2 years. Based on remote sensing and limited field observations, we propose that the disparate subdecadal changes were influenced by spatially variable drivers (e.g., sediment deposition, organic layer), controls (ground ice and its degree of protection), and feedback processes. Remote sensing helps quantify the heterogeneous interactions between permafrost, vegetation, and hydrology across permafrost‐affected fluvial landscapes. Interdisciplinary monitoring is needed to improve predictions of landscape dynamics and to constrain sediment, nutrient, and carbon budgets.more » « less
-
Abstract Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and laboratory observations indicate that talik (perennially thawed soils in permafrost) development in unsaturated Yedoma uplands leads to unexpectedly large methane emissions (35–78 mg m−2 d−1summer, 150–180 mg m−2 d−1winter). Upland Yedoma talik emissions were nearly three times higher annually than northern-wetland emissions on an areal basis. Approximately 70% emissions occurred in winter, when surface-soil freezing abated methanotrophy, enhancing methane escape from the talik. Remote sensing and numerical modeling indicate the potential for widespread upland talik formation across the pan-arctic Yedoma domain during the 21stand 22ndcenturies. Contrary to current climate model predictions, these findings imply a positive and much larger permafrost-methane-climate feedback for upland Yedoma.more » « less
-
Permafrost thaw exhibits an array of spatially heterogenous patterns. As the Arctic continues to warm, those spatial patterns of permafrost thaw, or degradation, are becoming increasingly intricate and dynamic. In particular, ice-wedge permafrost degradation contains a high degree of spatial heterogeneity as ice wedges transition through undegraded, degraded, and stabilized stages. Developing accurate remote sensing methods for characterizing degradation will better allow us to monitor and forecast Arctic landscape evolution and associated land-atmosphere carbon-climate interactions. In this study, we (i) characterized ice-wedge degradation stages across a regional scale using a novel hydrogeomorphic approach. Then, we (ii) assessed the heterogeneity of degradation from meter- to kilometer-scales, and (iii) identified landscape properties associated with degradation patterns. We leveraged the unique spectral and geometric properties of ice-wedge degradation stages to map those stages across 366 km2 of the Arctic Coastal Plain near Prudhoe Bay, Alaska in sub-meter resolution Worldview-2 satellite imagery. Then, we validated the maps with in-situ observations, airborne LIDAR, and drone multispectral surveys. We evaluated spatial heterogeneity in ice-wedge degradation through a clustering approach. Specifically, we grouped regions into hydrogeomorphic clusters defined by similarities in trough widths and flooding, which reflect distinct degradation stages. This analysis revealed that ice-wedge degradation is heterogeneous across both meter and kilometer scales. At the meter scale, a single ice-wedge polygon is generally bounded by varied degradation stages. In addition, the most advanced stages of degradation occur in areas of low trough relative elevation and at the junctions between troughs. At the kilometer-scale, distinct clustering of degradation stages was identified across the region and linked to spatial patterns in topography: regional clusters of advanced degradation occurred in higher elevation areas. The millennial-scale evolution of the landscape has resulted in heterogeneous topographic, hydrologic, and cryogenic characteristics; these varied features exhibit diverse responses to warming events, which reflect the dynamic interplay that occurs between permafrost landscapes and climate change.more » « less
-
Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications.more » « less