skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lattice QCD equation of state at finite chemical potential from an alternative resummation: Strangeness neutrality and beyond
In this contribution we present a resummation of the Quantum Chromodynamics (QCD) equation of state from lattice simulations at imaginary chemical potentials. We generalize the scheme introduced in a previous work [1], to the case of non-zero strangeness chemical potential. We present continuum extrapolated results for thermodynamic observables in the temperature range 130MeV ≤ T ≤ 280 MeV, for chemical potentials up to μ B / T = 3:5, along the strangeness neutral line. Furthermore, we relax the constraint of strangeness neutrality, by extrapolating to small values of the strangeness-to-baryon-number ratio R = n S / n B .  more » « less
Award ID(s):
2103680 2116686 1654219
PAR ID:
10425259
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Kim, Y.; Moon, D.H.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
276
ISSN:
2100-014X
Page Range / eLocation ID:
01014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cheshkov, C; Guernane, R; Maire, A (Ed.)
    Although calculations of QCD thermodynamics from first-principle lattice simulations are limited to zero net-density due to the fermion sign problem, several methods have been developed to extend the equation of state (EoS) to finite values of theB,Q,Schemical potentials. Taylor expansion aroundµi=0 (i = B,Q,S) enables to cover with confidence the region up toµi/T< 2.5. Recently, a new method has been developed to compute a 2D EoS in the (T,µB) plane. It was constructed through aT-expansion scheme (TExS), based on a resummation of the Taylor expansion, and is trusted up to densities aroundµB/T= 3.5. We present here the new 4D-TExS EoS, a generalization of the TExS to all 3 chemical potentials, expected to offer a larger coverage than the 4D Taylor expansion EoS. After explaining the basics of theT-Expansion Scheme and how it is generalized to multiple dimensions, we will present results for thermodynamic observables as functions of temperature and both finite baryon and strangeness chemical potentials. 
    more » « less
  2. We present a new equation of state for QCD in which the temperature T and the three chemical potentials for baryon number μ B , electric charge μ Q , and strangeness μ S can be varied independently. This result is based on a generalization of the T expansion scheme, thanks to which the diagonal μ B extrapolation was pushed up to a baryo-chemical potential μ B / T 3.5 for the first time. This considerably extended the coverage of the Taylor expansion, limited to μ B / T < 2.5 3 . As a consequence, we are able to offer a substantially larger coverage of the four-dimensional QCD phase diagram as well, compared to previously available Taylor expansion results. Our findings are based on new continuum estimated lattice data on the full set of second- and fourth-order fluctuations. 
    more » « less
  3. The equation of state (EoS) of QCD is a crucial input for the modeling of heavy-ion-collision (HIC) and neutron-star-merger systems. Calculations of the fundamental theory of QCD, which could yield the true EoS, are hindered by the infamous Fermi sign problem which only allows direct simulations at zero or imaginary baryonic chemical potential. As a direct consequence, the current coverage of the QCD phase diagram by lattice simulations is limited. In these proceedings, two different equations of state based on first-principle lattice QCD (LQCD) calculations are discussed. The first is solely informed by the fundamental theory by utilizing all available diagonal and non-diagonal susceptibilities up to O(µ 4 B) in order to reconstruct a full EoS at finite baryon number, electric charge and strangeness chemical potentials. For the second, we go beyond information from the lattice in order to explore the conjectured phase structure, not yet determined by LQCD methods, to assist the experimental HIC community in their search for the critical point. We incorporate critical behavior into this EoS by relying on the principle of universality classes, of which QCD belongs to the 3D Ising Model. This allows one to study the effects of a singularity on the thermodynamical quantities that make up the equation of state used for hydrodynamical simulations of HICs. Additionally, we ensure that these EoSs are valid for applications to HICs by enforcing conditions of strangeness neutrality and fixed charge-to-baryonnumber ratio. 
    more » « less
  4. Kim, Y.; Moon, D.H. (Ed.)
    At low to moderate collision energies where the parton formation time τ F is not small compared to the nuclear crossing time, the finite nuclear thickness significantly affects the energy density ϵ( t ) and net conserved-charge densities such as the net-baryon density n B ( t ) produced in heavy ion collisions. As a result, at low to moderate energies the trajectory in the QCD phase diagram is also affected by the finite nuclear thickness. Here, we first discuss our semi-analytical model and its results on ϵ( f ), n R ( t ), n Q ( t ), and n s ( t ) in central Au+Au collisions. We then compare the T ( t ), μ B ( t ), μ Q ( t ), and μ S ( t ) extracted with the ideal gas equation of state (EoS) with quantum statistics to those extracted with a lattice QCD-based EoS. We also compare the T -μ B trajectories with the RHIC chemical freezeout data. Finally, we discuss the effect of transverse flow on the trajectories. 
    more » « less
  5. We study in detail the influence of different chemical potentials (baryon, electric charge, strange, and neutrino) on how and how fast a free gas of quarks in the zero-temperature limit reaches the conformal limit. We discuss the influence of non-zero masses, the inclusion of leptons, and different constraints, such as charge neutrality, zero-net strangeness, and fixed lepton fraction. We also investigate for the first time how the symmetry energy of the system under some of these conditions approaches the conformal limit. We find that the inclusion of all quark masses (even the light ones) can produce different results depending on the chemical potential values or constraints assumed. A positive or negative deviation of 10% from the pressure of free massless quarks with the same chemical potential was found to take place as low as μB=77 to as high as 48,897 MeV. This illustrates the fact that the “free” or conformal limit is not a unique description. Finally, we briefly discuss what kind of corrections are expected from perturbative QCD as one goes away from the conformal limit. 
    more » « less