skip to main content


Title: Probabilistic Assessment of Footfall Vibration
As one of the serviceability limit states of structural design, excessive vibration has attracted more attention in recent years, with the design trend moving toward lighter and more slender structures. Footfall vibration contains high uncertainties in nature, with significant variations in walker weight, walking speeds, and dynamic load factor. Since conservative designs can often lead to significant cost premiums, this study focuses on the stochastic assessment of footfall vibration of on a composite steel floor to better understand the variation in performance of various design factors and better inform the ultimate decision-makers. To close the knowledge gap between academia and industry in this area, San Francisco State University and the University of South Carolina partnered with Arup through an NSF-funded Research Experience for Undergraduates (REU) program. A composite steel structure was modeled to resemble a typical office bay. The model was developed and analyzed in Oasys GSA. Monte Carlo simulation was used to quantify the probability of exceeding certain common vibration criteria. The results of this study would provide actionable guidance to stakeholders to weigh the benefits and costs between performance targets.  more » « less
Award ID(s):
1659877
NSF-PAR ID:
10401900
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IMAC-XL Conference and Exposition on Structural Dynamics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of openground- story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less
  2. To advance understanding of the multihazard performance of midrise cold-formed steel (CFS) construction, a unique multidisciplinary experimental program was conducted on the Large High-Performance Outdoor Shake Table (LHPOST) at the University of California, San Diego (UCSD). The centerpiece of this project involved earthquake and live fire testing of a full-scale 6-story CFS wall braced building. Initially, the building was subjected to seven earthquake tests of increasing motion intensity, sequentially targeting service, design, and maximum credible earthquake (MCE) demands. Subsequently, live fire tests were conducted on the earthquake-damaged building at two select floors. Finally, for the first time, the test building was subjected to two postfire earthquake tests, including a low-amplitude aftershock and an extreme near-fault target MCE-scaled motion. In addition, low-amplitude white noise and ambient vibration data were collected during construction and seismic testing phases to support identification of the dynamic state of the building system. This paper offers an overview of this unique multihazard test program and presents the system-level structural responses and physical damage features of the test building throughout the earthquake-fire-earthquake test phases, whereas the component-level seismic behavior of the shear walls and seismic design implications of CFS-framed building systems are discussed in a companion paper. 
    more » « less
  3. This research investigated experimentally the seismic performance of steel gravity framing with a concrete slab at the system level. Two half-story, two-by-three bay steel gravity frame specimens were tested under cyclic loading. Bolted-bolted double-angle connections were used for a beam-to-column gravity connection. Primary design variables and construction details include the orientation of the metal deck to the loading direction, the presence or absence of metal deck seams on secondary beams, and the contribution of additional reinforcement bars in the concrete slab. Concrete blocks were positioned at the midpoint of each bay to simulate gravity loads, and a quasi-static displacement-controlled cyclic loading protocol was applied to the specimen using three hydraulic actuators. These investigations confirmed general observations from previous subassembly testing programs that the composite steel gravity framing system can provide substantial flexural stiffness, strength, and ductility under cyclic loading. Further, the test findings showed that the primary design variables and construction details significantly affected the cyclic behavior of composite gravity connections. Comparing the test results from a multi-bay setup and a subassembly testing setup, the cyclic behavior showed remarkable differences, especially for cases with weak axis decking or strong axis decking with a seam. These large differences are attributed to a significant separation of the girder from the column in the subassembly testing setup, which may not be present in a real building. Virtually all previous cyclic loading tests on gravity connections have been conducted in subassembly test setups. These subassembly tests are therefore the basis for the models that are currently used to include gravity frame connections in the seismic performance assessment of buildings, and these models may be quite inaccurate in some cases. The data generated in this system-level testing program is intended to support efforts to develop improved models of gravity connections subject to seismic loading. 
    more » « less
  4. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of open-ground-story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.

     
    more » « less
  5. This article highlights the absence of published paradigms hybridized by The Cuckoo Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite materials under natural frequency constraints. The article proposes a novel optimization algorithm called CSSPO for optimizing truss structures made of composite materials, known as fiber-reinforced polymer (FRP) composites, to address this gap. Optimization problems of truss structures under frequency constraints are recognized as challenging due to their non-linear and non-convex search spaces that contain numerous local optima. The proposed methodology produces high-quality optimal solutions with less computational effort than the original methods. The aim of this work is to compare the performance of carbon FRP (CFRP), glass FRP (GFRP), and steel using a novel hybrid algorithm to provide valuable insights and inform decision-making processes in material selection and design. Four benchmark structure trusses with natural frequency constraints were utilized to demonstrate the efficiency and robustness of the CSSPO. The numerical analysis findings indicate that the CSSPO outperforms the classical SPO and exhibits comparable or superior performance when compared to the SPO. The study highlights that implementing CFRP and GFRP composites in truss construction leads to a notable reduction in weight compared to using steel. 
    more » « less