skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Abelian effects in dissipative photonic topological lattices
Abstract Topology is central to phenomena that arise in a variety of fields, ranging from quantum field theory to quantum information science to condensed matter physics. Recently, the study of topology has been extended to open systems, leading to a plethora of intriguing effects such as topological lasing, exceptional surfaces, as well as non-Hermitian bulk-boundary correspondence. Here, we show that Bloch eigenstates associated with lattices with dissipatively coupled elements exhibit geometric properties that cannot be described via scalar Berry phases, in sharp contrast to conservative Hamiltonians with non-degenerate energy levels. This unusual behavior can be attributed to the significant population exchanges among the corresponding dissipation bands of such lattices. Using a one-dimensional example, we show both theoretically and experimentally that such population exchanges can manifest themselves via matrix-valued operators in the corresponding Bloch dynamics. In two-dimensional lattices, such matrix-valued operators can form non-commuting pairs and lead to non-Abelian dynamics, as confirmed by our numerical simulations. Our results point to new ways in which the combined effect of topology and engineered dissipation can lead to non-Abelian topological phenomena.  more » « less
Award ID(s):
1846273 1918549
PAR ID:
10402224
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological phases feature robust edge states that are protected against the effects of defects and disorder. These phases have largely been studied in conservatively coupled systems, in which non-trivial topological invariants arise in the energy or frequency bands of a system. Here we show that, in dissipatively coupled systems, non-trivial topological invariants can emerge purely in a system’s dissipation. Using a highly scalable and easily reconfigurable time-multiplexed photonic resonator network, we experimentally demonstrate one- and two-dimensional lattices that host robust topological edge states with isolated dissipation rates, measure a dissipation spectrum that possesses a non-trivial topological invariant, and demonst rate topological protection of the network’s quality factor. The topologically non-trivial dissipation of our system exposes new opportunities to engineer dissipation in both classical and quantum systems. Moreover, our experimental platform’s straightforward scaling to higher dimensions and its ability to implement inhomogeneous, non-reciprocal and long range couplings may enable future work in the study of synthetic dimensions. 
    more » « less
  2. Particles placed inside an Abelian (commutative) gauge field can acquire different phases when traveling along the same path in opposite directions, as is evident from the Aharonov-Bohm effect. Such behaviors can get significantly enriched for a non-Abelian gauge field, where even the ordering of different paths cannot be switched. So far, real-space realizations of gauge fields have been limited to Abelian ones. We report an experimental synthesis of non-Abelian gauge fields in real space and the observation of the non-Abelian Aharonov-Bohm effect with classical waves and classical fluxes. On the basis of optical mode degeneracy, we break time-reversal symmetry in different manners, via temporal modulation and the Faraday effect, to synthesize tunable non-Abelian gauge fields. The Sagnac interference of two final states, obtained by reversely ordered path integrals, demonstrates the noncommutativity of the gauge fields. Our work introduces real-space building blocks for non-Abelian gauge fields, relevant for classical and quantum exotic topological phenomena. 
    more » « less
  3. Abstract Dissipation can serve as a powerful resource for controlling the behavior of open quantum systems. Recently there has been a surge of interest in the influence of dissipative coupling on large quantum systems and, more specifically, how these processes can influence band topology and phenomena like many-body localization. Here, we explore the engineering of local, tunable dissipation in so-called synthetic lattices, arrays of quantum states that are parametrically coupled in a fashion analogous to quantum tunneling. Considering the specific case of momentum-state lattices, we investigate two distinct mechanisms for engineering controlled loss: one relying on an explicit form of dissipation by spontaneous emission, and another relying on reversible coupling to a large reservoir of unoccupied states. We experimentally implement the latter and demonstrate the ability to tune the local loss coefficient over a large range. The introduction of controlled loss to the synthetic lattice toolbox promises to pave the way for studying the interplay of dissipation with topology, disorder, and interactions. 
    more » « less
  4. We develop representation theoretic techniques to construct three dimensional non-semisimple topological quantum field theories which model homologically truncated topological B-twists of abelian Gaiotto--Witten theory with linear matter. Our constructions are based on relative modular structures on the category of weight modules over an unrolled quantization of a Lie superalgebra. The Lie superalgebra, originally defined by Gaiotto and Witten, is associated to a complex symplectic representation of a metric abelian Lie algebra. The physical theories we model admit alternative realizations as Chern--Simons-Rozansky--Witten theories and supergroup Chern--Simons theories and include as particular examples global forms of gl(1,1)-Chern--Simons theory and toral Chern--Simons theory. Fundamental to our approach is the systematic incorporation of non-genuine line operators which source flat connections for the topological flavour symmetry of the theory. 
    more » « less
  5. Topological effects manifest in a variety of lattice geometries. While square lattices, due to their simplicity, have been used for models supporting nontrivial topology, several exotic topological phenomena such as Dirac points, Weyl points, and Haldane phases are most commonly supported by non-square lattices. Examples of prototypical non-square lattices include the honeycomb lattice of graphene and 2D materials, and the Kagome lattice, both of which break fundamental symmetries and can exhibit quantized transport, especially when long-range hoppings and gauge fields are incorporated. The challenge of controllably realizing such long-range hoppings and gauge fields has motivated a large body of research focused on harnessing lattices encoded in synthetic dimensions. Photons in particular have many internal degrees of freedom and hence show promise for implementing these synthetic dimensions; however, most photonic synthetic dimensions have hitherto created 1D or 2D square lattices. Here we show that non-square lattice Hamiltonians such as the Haldane model and its variations can be implemented using Floquet synthetic dimensions. Our construction uses dynamically modulated ring resonators and provides the capacity for directk-space engineering of lattice Hamiltonians. Thisk-space construction lifts constraints on the orthogonality of lattice vectors that make square geometries simpler to implement in lattice-space constructions and instead transfers the complexity to the engineering of tailored, complex Floquet drive signals. We simulate topological signatures of the Haldane and the brick-wall Haldane model and observe them to be robust in the presence of external optical drive and photon loss, and discuss unique characteristics of their topological transport when implemented on these Floquet lattices. Our proposal demonstrates the potential of driven-dissipative Floquet synthetic dimensions as a new architecture fork-space Hamiltonian simulation of high-dimensional lattice geometries, supported by scalable photonic integration, that lifts the constraints of several existing platforms for topological photonics and synthetic dimensions. 
    more » « less