We introduce a new iterative amalgamated free product construction of II factors, and use it to construct a separable II factor which does not have property Gamma and is not elementarily equivalent to the free group factor $$L(F_n)$$, for any $$n\geq 2$$. This provides the first explicit example of two non-elementarily equivalent $$II_1$$ factors without property Gamma. Moreover, our construction also provides the first explicit example of a $$II_1$$ factor without property Gamma that is also not elementarily equivalent to any ultraproduct of matrix algebras. Our proofs use a blend of techniques from Voiculescu’s free entropy theory and Popa’s deformation/rigidity theory.
more »
« less
Poisson boundaries of II 1 factors
We introduce Poisson boundaries of II $$_1$$ factors with respect to density operators that give the traces. The Poisson boundary is a von Neumann algebra that contains the II $$_1$$ factor and is a particular example of the boundary of a unital completely positive map as introduced by Izumi. Studying the inclusion of the II $$_1$$ factor into its boundary, we develop a number of notions, such as double ergodicity and entropy, that can be seen as natural analogues of results regarding the Poisson boundaries introduced by Furstenberg. We use the techniques developed to answer a problem of Popa by showing that all finite factors satisfy his MV property. We also extend a result of Nevo by showing that property (T) factors give rise to an entropy gap.
more »
« less
- Award ID(s):
- 1801125
- PAR ID:
- 10402293
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 158
- Issue:
- 8
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 1746 to 1776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study several model-theoretic aspects of W $$^*$$ ∗ -probability spaces, that is, $$\sigma $$ σ -finite von Neumann algebras equipped with a faithful normal state. We first study the existentially closed W $$^*$$ ∗ -spaces and prove several structural results about such spaces, including that they are type III $$_1$$ 1 factors that tensorially absorb the Araki–Woods factor $$R_\infty $$ R ∞ . We also study the existentially closed objects in the restricted class of W $$^*$$ ∗ -probability spaces with Kirchberg’s QWEP property, proving that $$R_\infty $$ R ∞ itself is such an existentially closed space in this class. Our results about existentially closed probability spaces imply that the class of type III $$_1$$ 1 factors forms a $$\forall _2$$ ∀ 2 -axiomatizable class. We show that for $$\lambda \in (0,1)$$ λ ∈ ( 0 , 1 ) , the class of III $$_\lambda $$ λ factors is not $$\forall _2$$ ∀ 2 -axiomatizable but is $$\forall _3$$ ∀ 3 -axiomatizable; this latter result uses a version of Keisler’s Sandwich theorem adapted to continuous logic. Finally, we discuss some results around elementary equivalence of III $$_\lambda $$ λ factors. Using a result of Boutonnet, Chifan, and Ioana, we show that, for any $$\lambda \in (0,1)$$ λ ∈ ( 0 , 1 ) , there is a family of pairwise non-elementarily equivalent III $$_\lambda $$ λ factors of size continuum. While we cannot prove the same result for III $$_1$$ 1 factors, we show that there are at least three pairwise non-elementarily equivalent III $$_1$$ 1 factors by showing that the class of full factors is preserved under elementary equivalence.more » « less
-
null (Ed.)Abstract This paper gives a free entropy theoretic perspective on amenable absorption results for free products of tracial von Neumann algebras. In particular, we give the 1st free entropy proof of Popa’s famous result that the generator MASA in a free group factor is maximal amenable, and we partially recover Houdayer’s results on amenable absorption and Gamma stability. Moreover, we give a unified approach to all these results using $$1$$-bounded entropy. We show that if $${\mathcal{M}} = {\mathcal{P}} * {\mathcal{Q}}$$, then $${\mathcal{P}}$$ absorbs any subalgebra of $${\mathcal{M}}$$ that intersects it diffusely and that has $$1$$-bounded entropy zero (which includes amenable and property Gamma algebras as well as many others). In fact, for a subalgebra $${\mathcal{P}} \leq{\mathcal{M}}$$ to have this absorption property, it suffices for $${\mathcal{M}}$$ to admit random matrix models that have exponential concentration of measure and that “simulate” the conditional expectation onto $${\mathcal{P}}$$.more » « less
-
An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications.more » « less
-
State-of-the-art many-body wave function techniques rely on heuristics to achieve high accuracy at an attainable computational cost to solve the many-body Schrödinger equation. By far, the most common property used to assess accuracy has been the total energy; however, total energies do not give a complete picture of electron correlation. In this work, we assess the von Neumann entropy of the one-particle reduced density matrix (1-RDM) to compare selected configuration interaction (CI), coupled cluster, variational Monte Carlo, and fixed-node diffusion Monte Carlo for benchmark hydrogen chains. A new algorithm, the circle reject method, is presented, which improves the efficiency of evaluating the von Neumann entropy using quantum Monte Carlo by several orders of magnitude. The von Neumann entropy of the 1-RDM and the eigenvalues of the 1-RDM are shown to distinguish between the dynamic correlation introduced by the Jastrow and the static correlation introduced by determinants with large weights, confirming some of the lore in the field concerning the difference between the selected CI and Slater–Jastrow wave functions.more » « less
An official website of the United States government

