skip to main content

This content will become publicly available on November 7, 2023

Title: Photoelectron imaging of cryogenically cooled BiO and BiO 2 anions
The advent of ion traps as cooling devices has revolutionized ion spectroscopy as it is now possible to efficiently cool ions vibrationally and rotationally to levels where truly high-resolution experiments are now feasible. Here, we report the first results of a new experimental apparatus that couples a cryogenic 3D Paul trap with a laser vaporization cluster source for high-resolution photoelectron imaging of cold cluster anions. We have demonstrated the ability of the new apparatus to efficiently cool BiO − and BiO 2 − to minimize vibrational hot bands and allow high-resolution photoelectron images to be obtained. The electron affinities of BiO and BiO 2 are measured accurately for the first time to be 1.492(1) and 3.281(1) eV, respectively. Vibrational frequencies for the ground states of BiO and BiO 2 , as well as those for the anions determined from temperature-dependent studies, are reported.
Authors:
; ; ;
Award ID(s):
2053541
Publication Date:
NSF-PAR ID:
10402315
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
17
Page Range or eLocation-ID:
171101
ISSN:
0021-9606
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal.

  2. Abstract

    In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal.

  3. Abstract

    Ion irradiation is a versatile tool to introduce controlled defects into two-dimensional (2D) MoS2on account of its unique spatial resolution and plethora of ion types and energies available. In order to fully realise the potential of this technique, a holistic understanding of ion-induced defect production in 2D MoS2crystals of different thicknesses is mandatory. X-ray photoelectron spectroscopy, electron diffraction and Raman spectroscopy show that thinner MoS2crystals are more susceptible to radiation damage caused by 225 keV Xe+ions. However, the rate of defect production in quadrilayer and bulk crystals is not significantly different under our experimental conditions. The rate at which S atoms are sputtered as a function of radiation exposure is considerably higher for monolayer MoS2, compared to bulk crystals, leading to MoO3formation. P-doping of MoS2is observed and attributed to the acceptor states introduced by vacancies and charge transfer interactions with adsorbed species. Moreover, the out-of-plane vibrational properties of irradiated MoS2crystals are shown to be strongly thickness-dependent: in mono- and bilayer MoS2, the confinement of phonons by defects results in a blueshift of theA1gmode. Whereas, a redshift is observed in bulk crystals due to attenuation of the effective restoring forces acting on S atoms caused by vacanciesmore »in adjacent MoS2layers. Consequently, theA1gfrequency of tri- and quadrilayer crystals is statistically invariant on account oft competition between phonon confinement effects and interlayer interactions. TheA1glinewidth is observed to decrease in bi- and trilayer crystals after low dose irradiation and is attributed to layer decoupling. This work shows that there is a complex interplay between defect production, crystal thickness and interlayer interactions in MoS2. Our results demonstrate that ion irradiation is an effective tool to modulate the electronic, vibrational and structural properties of MoS2, which may prove beneficial for practical applications.

    « less
  4. Weakly Coordinating Anions (WCAs) containing electron deficient delocalized anionic fragments that are reasonably inert allow for the isolation of strong electrophiles. Perfluorinated borates, perfluorinated aluminum alkoxides, and halogenated carborane anions are a few families of WCAs that are commonly used in synthesis. Application of similar design strategies to oxide surfaces is challenging. This paper describes the reaction of Al(OR F ) 3 *PhF (R F = C(CF 3 ) 3 ) with silica partially dehydroxylated at 700 °C (SiO 2-700 ) to form the bridging silanol Si–OH⋯Al(OR F ) 3 ( 1 ). DFT calculations using small clusters to model 1 show that the gas phase acidity (GPA) of the bridging silanol is 43.2 kcal mol −1 lower than the GPA of H 2 SO 4 , but higher than the strongest carborane acids, suggesting that deprotonated 1 would be a WCA. Reactions of 1 with NOct 3 show that 1 forms weaker ion-pairs than classical WCAs, but stronger ion-pairs than carborane or borate anions. Though 1 forms stronger ion-pairs than these state-of-the-art WCAs, 1 reacts with alkylsilanes to form silylium type surface species. To the best of our knowledge, this is the first example of a silylium supported onmore »derivatized silica.« less
  5. Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48 O 3 = 16 O 16 O 16 O and for the family of 18 O-enriched isotopomers 50 O 3 = { 16 O 16 O 18 O, 16 O 18 O 16 O, 18 O 16 O 16 O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48 O 3 and of two identical nuclei in 50 O 3 , using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm −1 , making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computedmore »and analyzed. The states situated deep in the three (for 48 O 3 ) or two (for 50 O 3 ) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration–rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time.« less