skip to main content


Title: Cosmological structure formation and soliton phase transition in fuzzy dark matter with axion self-interactions
ABSTRACT

We investigate cosmological structure formation in fuzzy dark matter (FDM) with the attractive self-interaction (SI) with numerical simulations. Such a SI would arise if the FDM boson were an ultra-light axion, which has a strong CP symmetry-breaking scale (decay constant). Although weak, the attractive SI may be strong enough to counteract the quantum ‘pressure’ and alter structure formation. We find in our simulations that the SI can enhance small-scale structure formation, and soliton cores above a critical mass undergo a phase transition, transforming from dilute to dense solitons.

 
more » « less
Award ID(s):
2108962 1910346 1752913 2007355 2107724
NSF-PAR ID:
10402398
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2608-2615
Size(s):
["p. 2608-2615"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fuzzy dark matter (FDM) is a proposed modification for the standard cold dark matter (CDM) model motivated by small-scale discrepancies in low-mass galaxies. Composed of ultralight (mass ∼ 1022eV) axions with kiloparsec-scale de Broglie wavelengths, this is one of a class of candidates that predicts that the first collapsed objects form in relatively massive dark matter halos. This implies that the formation history of the first stars and galaxies would be very different, potentially placing strong constraints on such models. Here we numerically simulate the formation of the first stars in an FDM cosmology, following the collapse in a representative volume all the way down to primordial protostar formation including a primordial nonequilibrium chemical network and cooling for the first time. We find two novel results: first, the large-scale collapse results in a very thin and flat gas “pancake”; second, despite the very different cosmology, this pancake fragments until it forms protostellar objects indistinguishable from those in CDM. Combined, these results indicate that the first generation of stars in this model are also likely to be massive and, because of the sheet morphology, do not self-regulate, resulting in a massive Population III starburst. We estimate the total number of first stars forming in this extended structure to be 104over 20 Myr using a simple model to account for the ionizing feedback from the stars, and should be observable with the James Webb Space Telescope. These predictions provide a potential smoking gun signature of FDM and similar dark matter candidates.

     
    more » « less
  2. ABSTRACT

    Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models.

     
    more » « less
  3. ABSTRACT

    Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.

     
    more » « less
  4. ABSTRACT

    AI super-resolution, combining deep learning and N-body simulations, has been shown to successfully reproduce the large-scale structure and halo abundances in the Lambda cold dark matter cosmological model. Here, we extend its use to models with a different dark matter content, in this case fuzzy dark matter (FDM), in the approximation that the difference is encoded in the initial power spectrum. We focus on redshift z = 2, with simulations that model smaller scales and lower masses, the latter by two orders of magnitude, than has been done in previous AI super-resolution work. We find that the super-resolution technique can reproduce the power spectrum and halo mass function to within a few per cent of full high-resolution calculations. We also find that halo artefacts, caused by spurious numerical fragmentation of filaments, are equally present in the super-resolution outputs. Although we have not trained the super-resolution algorithm using full quantum pressure FDM simulations, the fact that it performs well at the relevant length and mass scales means that it has promise as a technique that could avoid the very high computational cost of the latter, in some contexts. We conclude that AI super-resolution can become a useful tool to extend the range of dark matter models covered in mock catalogues.

     
    more » « less
  5. Currently, no commercial aluminum 7000 series filaments are available for making aluminum parts using fused deposition modeling (FDM)-based additive manufacturing (AM). The key technical challenge associated with the FDM of aluminum alloy parts is consolidating the loosely packed alloy powders in the brown-body, separated by thin layers of surface oxides and polymer binders, into a dense structure. Classical pressing and sintering-based powder metallurgy (P/M) technologies are employed in this study to assist the development of FDM processing strategies for making strong Al7075 AM parts. Relevant FDM processing strategies, including green-body/brown-body formation and the sintering processes, are examined. The microstructures of the P/M-prepared, FDM-like Al7075 specimens are analyzed and compared with commercially available FDM 17-4 steel specimens. We explored the polymer removal and sintering strategies to minimize the pores of FDM-Al7075-sintered parts. Furthermore, the mechanisms that govern the sintering process are discussed. 
    more » « less