skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facilitating Prescribed Fire in Northern California through Indigenous Governance and Interagency Partnerships
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion.  more » « less
Award ID(s):
1657569
PAR ID:
10313244
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fire
Volume:
4
Issue:
3
ISSN:
2571-6255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although prescribed fire is frequently used in the Southeastern United States, land managers in the region and across the country plan to expand burning to mitigate wildfire and achieve other ecological goals. However, smoke management is often considered a barrier to prescribed fire. Additionally, climate change will likely affect the frequency of acceptable meteorological conditions for prescribed burning, potentially restricting the use of the practice. Here, we examine the air quality impacts from prescribed fire and wildfire in the Southeastern U.S., the populations affected by smoke in the region, and how these impacts may change under climate change. We rely on projections of wildfire burn area and climate-driven shifts in the frequency of meteorological conditions adequate for prescribed burning, as well as a survey of Southeastern land managers investigating their anticipated response to these changes. Based on this information, we use chemical transport modeling to assess the contributions of wildfire and prescribed fire to air pollution, and project how smoke impacts may vary due to climate change and different land manager responses. We find that prescribed fire is responsible for a significant fraction of regional particulate matter pollution. Populations exposed to the most smoke tend to have higher fractions of people of color and low income. Depending on how land managers respond to changes in atmospheric conditions under climate change, prescribed fire smoke may decrease slightly in the areas with the heaviest burning or increase across much of the Southeast. Projections also show that climate-driven changes in wildfire and prescribed burning may impact compliance with recently updated air quality standards. The analysis assesses the potential consequences of climate change on air pollution over a region in which wildland fire is extensively managed, providing insight into land management strategies that call for increased application of prescribed fire. 
    more » « less
  2. Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a prescribed burn occurring in the Okanogan–Wenatchee National Forest. We utilize the logit model to further assess how personnel availability compares to other potential barriers (e.g., meteorological conditions) in terms of association with odds of a prescribed burn occurring. Our analysis finds that fall and spring days in general have distinct constellations of characteristics. Unavailability of personnel is associated with lower odds of prescribed burning in the fall season, controlling for meteorological conditions. However, in the spring, only fuel moisture is observed to be associated with the odds of prescribed burning. Our findings suggest that if agencies aim to increase prescribed burning to mitigate wildfire risk, workforce decisions should prioritize firefighter availability in the fall. 
    more » « less
  3. Di Luca, Marco (Ed.)
    Recently, tick-borne illnesses have been trending upward and are an increasing source of risk to people’s health in the United States. This is due to range expansion in tick habitats as a result of climate change. Thus, it is imperative to find a practical and cost-efficient way of managing tick populations. Prescribed burns are a common form of land management that can be cost-efficient if properly managed and can be applied across large amounts of land. In this study, we present a compartmental model for ticks carrying Lyme disease and uniquely incorporate the effects of prescribed fire using an impulsive system to investigate the effects of prescribed fire intensity (high and low) and the duration between burns. Our study found that fire intensity has a larger impact in reducing tick population than the frequency between burns. Furthermore, burning at high intensity is preferable to burning at low intensity whenever possible, although high-intensity burns may be unrealistic due to environmental factors. Annual burns resulted in the most significant reduction in infectious nymphs, which are the primary carriers of Lyme disease. 
    more » « less
  4. Over the past century, rangelands worldwide have experienced changes in vegetation cover and structure, many transitioning from grass-dominated to shrub-dominated systems (Archer et al. 2017; Fuhlendorf et al. 2017). In North America, such transitions are primarily a consequence of livestock management and fire exclusion practices of Euro-American settlers (Bray 1904; Archer 1989; Fuhlendorf and Smeins 1997). These shrub-dominated systems are often less productive for wildlife and livestock and may have crossed a threshold which cannot be reversed via common restoration practices such as prescribed fire (Ansley and Castellano 2006; Ratajczak et al. 2016). Oftentimes, the inability of prescribed fire to succeed at crossing this threshold is the result of insufficient fuel loading or inadequate fire intensity due to prescription parameters (Havstad and James 2010; Twidwell et al. 2016). However, recent work has demonstrated that burning under more extreme conditions (e.g. higher temperatures, lower fine fuel moisture) can slow or change the course of encroachment (Twidwell et al. 2013; Twidwell et al. 2016). Many encroaching shrub species are capable of persisting after fire via resprouting from protected buds (Bond and Midgley 2001). Such mechanisms pose challenges for land managers, particularly because resprouting often results in a higher number of stems per individual plant. Mesquite (Prosopis spp.) shrubs are well-known for their ability to persist to varying degrees following disturbance due to fire, chemical, and mechanical treatments. Due to historical livestock management and fire suppression practices, honey mesquite (Prosopis glandulosa) has increased in dominance and abundance in the southern Great Plains since the beginning of Euro-American settlement (Bray 1904; Archer 1989). Although prescribed fire has increased in acceptance as a method to reduce encroachment of mesquite, low-intensity fires performed during the dormant season rarely cause mortality (Wright and Bailey 1980; Ansley et al. 1998), especially when they are performed as a single treatment rather than as part of a comprehensive management plan. However, recent studies have demonstrated that more intense fires conducted outside the dormant season are capable of reducing resprouters (including mesquite), particularly during periods of drought (Twidwell et al. 2016). We evaluated impacts of fire intensity and abiotic factors on persistence of honey mesquite, a species of concern for managers in the southern Great Plains. 
    more » « less
  5. Background: Climate change is a strong contributing factor in the lengthening and intensification of wildfire seasons, with warmer and often drier conditions associated with increasingly severe impacts. Land managers are faced with challenging decisions about how to manage forests, minimize risk of extreme wildfire, and balance competing values at risk, including communities, habitat, air quality, surface drinking water, recreation, and infrastructure. Aims: We propose that land managers use decision analytic frameworks to complement existing decision support systems such as the Interagency Fuel Treatment Decision Support System. Methods: We apply this approach to a fire-prone landscape in eastern Washington State under two proposed landscape treatment alternatives. Through stakeholder engagement, a quantitative wildfire risk assessment, and translating results into probabilistic descriptions of wildfire occurrence (burn probability) and intensity (conditional flame length), we construct a decision tree to explicitly evaluate tradeoffs of treatment alternative outcomes. Key Results: We find that while there are slightly more effective localized benefits for treatments involving thinning and prescribed burning, neither of the UWPP’s proposed alternatives are more likely to meaningfully minimize the risk of wildfire impacts at the landscape level. Conclusions: This case study demonstrates that a quantitatively informed decision analytic framework can improve land managers’ ability to effectively and explicitly evaluate tradeoffs between treatment alternatives. 
    more » « less