skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of tensile performance for 3D printed photopolymer gyroid lattices using structural porosity, base material properties, and machine learning
Advancements in additive manufacturing (AM) technology and three-dimensional (3D) modeling software have enabled the fabrication of parts with combinations of properties that were impossible to achieve with traditional manufacturing techniques. Porous designs such as truss-based and sheet-based lattices have gained much attention in recent years due to their versatility. The multitude of lattice design possibilities, coupled with a growing list of available 3D printing materials, has provided a vast range of 3D printable structures that can be used to achieve desired performance. However, the process of computationally or experimentally evaluating many combinations of base material and lattice design for a given application is impractical. This research proposes a framework for quickly predicting key mechanical properties of 3D printed gyroid lattices using information about the base material and porosity of the structure. Experimental data was gathered to train a simple, interpretable, and accurate kernel ridge regression machine learning model. The performance of the model was then compared to numerical simulation data and demonstrated similar accuracy at a fraction of the computation time. Ultimately, the model development serves as an advancement in ML-driven mechanical property prediction that can be used to guide extension of current and future models.  more » « less
Award ID(s):
2022040
PAR ID:
10539625
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials & Design
Volume:
232
Issue:
C
ISSN:
0264-1275
Page Range / eLocation ID:
112126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1]. 
    more » « less
  2. The ability to manufacture complex design geometries via Additive Manufacturing (AM) has led to a rapid growth in advancing the design methods, fabrication, and application of Triply Periodic Minimal Surface (TPMS) lattices with minimal surface topologies. Due to its zero-mean curvature, TPMS lattices can be additively manufactured without any sacrificial support structures and offer both design and manufacturing engineers, unprecedented control over the local physical properties (surface area, relative density, etc.) and local mechanical properties (flexural strength, Young’s modulus, etc.). TPMS lattices are of high interest for a wide range of applications such as biomedical implants, energy absorption, and surface fluidic applications such as heat exchangers, and energy storage. Recent advancements in functionally graded TPMS lattice design by varying local lattice geometry has shown to result in different mechanical performance. However, there have been limited studies in understanding the functional grading of AM process conditions (e.g., Laser-Powder Bed Fusion in this study) and lattice sheet thickness to better map the design-processing conditions-properties. The goal of this study is to achieve similar mechanical properties in TPMS sheet lattices with two different TPMS sheet thicknesses by varying laser processing conditions (e.g., contour and hatch conditions in this study). Quasi-static tensile testing of solid samples with corresponding AM conditions and 3-point bending tests of TPMS lattices were performed in accordance with ASTM E8 and ASTM E290, respectively. It was observed that the flexural properties of the 0.75 mm and 0.25 mm TPMS lattices are similar and exhibit different properties with different scan strategies and speed variations under contour-only and hatch-only laser scanning strategies. Also, the 0.75 mm TPMS sheet lattices exhibited 79 % higher flexural stiffness than the 0.25 mm sheet lattices. It was also observed that this observed trend was reversed in the case of tensile properties. Findings from this study can provide new directions towards achieving gradient TPMS lattice designs with varying local mechanical performance by grading the laser scanning strategies to achieve desired mechanical properties and surface topologies. 
    more » « less
  3. Abstract Recent advances in computational design and 3D printing enable the fabrication of polymer lattices with high strength‐to‐weight ratio and tailored mechanics. To date, 3D lattices composed of monolithic materials have primarily been constructed due to limitations associated with most commercial 3D printing platforms. Here, freeform fabrication of multi‐material polymer lattices via embedded three‐dimensional (EMB3D) printing is demonstrated. An algorithm is developed first that generates print paths for each target lattice based on graph theory. The effects of ink rheology on filamentary printing and the effects of the print path on resultant mechanical properties are then investigated. By co‐printing multiple materials with different mechanical properties, a broad range of periodic and stochastic lattices with tailored mechanical responses can be realized opening new avenues for constructing architected matter. 
    more » « less
  4. null (Ed.)
    Engineered micro- and macro-structures via additive manufacturing (AM) or 3D-Printing can create structurally varying properties in a part, which is difficult via traditional manufacturing methods. Herein we have utilized powder bed fusion-based selective laser melting (SLM) to fabricate variable lattice structures of Ti6Al4V with uniquely designed unit cell configurations to alter the mechanical performance. Five different configurations were designed based on two natural crystal structures – hexagonal closed packed (HCP) and body centered cubic (BCC). Under compressive loading, as much as 74% difference was observed in compressive strength, and 71% variation in elastic modulus, with all samples having porosities in a similar range of 53 to 65%, indicating the influence of macro-lattice designs alone on mechanical properties. Failure analysis of the fracture surfaces helped with the overall understanding of how configurational effects and unit cell design influences mechanical properties of these samples. Our work highlights the ability to leverage advanced manufacturing techniques to tailor the structural performance of multifunctional components. 
    more » « less
  5. Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strainεvaries by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double‐gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing. 
    more » « less