Silicon photonics has enabled large-scale production of integrated optical devices for a vast array of applications. However, extending its use to nonlinear devices is difficult since silicon does not exhibit an intrinsic second-order nonlinearity. While heterogeneous integration of strongly nonlinear materials is possible, it often requires additional procedures since these materials cannot be directly grown on silicon. On the other hand, CMOS-compatible materials often suffer from weaker nonlinearities, compromising efficiency. A promising alternative to current material platforms is scandium-doped aluminum nitride (Al1−xScxN), which maintains the CMOS compatibility of aluminum nitride (AlN) and has been used in electrical devices for its enhanced piezoelectricity. Here, we observe enhancement in optical second-order susceptibility (χ(2)) in CMOS-compatible Al1−xScxN thin films with varying Sc concentrations. For Al0.64Sc0.36N, the χ(2) component d33 is enhanced to 62.3 ± 5.6 pm/V, which is 12 times stronger than intrinsic AlN and twice as strong as lithium niobate. Increasing the Sc concentration enhances both χ(2) components, but loss increases with a higher Sc concentration as well, with Al0.64Sc0.36N exhibiting 17.2 dB/cm propagation loss at 1550 nm and Al0.80Sc0.20N exhibiting 8.2 dB/cm at 1550 nm. Since other material properties of this alloy are also affected by Sc, tuning the Sc concentration can balance strong nonlinearity, loss, and other factors depending on the needs of specific applications. As such, Al1−xScxN could facilitate low cost development of nonlinear integrated photonic devices.
more »
« less
Degenerate optical parametric amplification in CMOS silicon
Silicon is a common material for photonics due to its favorable optical properties in the telecom and mid-wave IR bands, as well as compatibility with a wide range of complementary metal–oxide semiconductor (CMOS) foundry processes. Crystalline inversion symmetry precludes silicon from natively exhibiting second-order nonlinear optical processes. In this work, we build on recent works in silicon photonics that break this material symmetry using large bias fields, thereby enablingχ(2)interactions. Using this approach, we demonstrate both second-harmonic generation (with a normalized efficiency of 0.20%W−1cm−2) and, to our knowledge, the first degenerateχ(2)optical parametric amplifier (with an estimated normalized gain of 0.6dBW−1/2cm−1) using silicon-on-insulator waveguides fabricated in a CMOS-compatible commercial foundry. We expect this technology to enable the integration of novel nonlinear optical devices such as optical parametric amplifiers, oscillators, and frequency converters into large-scale, hybrid photonic–electronic systems by leveraging the extensive ecosystem of CMOS fabrication.
more »
« less
- PAR ID:
- 10402881
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 430
- Size(s):
- Article No. 430
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Silicon carbide (SiC)'s nonlinear optical properties and applications to quantum information have recently brought attention to its potential as an integrated photonics platform. However, despite its many excellent material properties, such as large thermal conductivity, wide transparency window, and strong optical nonlinearities, it is generally a difficult material for microfabrication. Here, it is shown that directly bonded silicon‐on‐silicon carbide can be a high‐performing hybrid photonics platform that does not require the need to form SiC membranes or directly pattern in SiC. The optimized bonding method yields defect‐free, uniform films with minimal oxide at the silicon–silicon–carbide interface. Ring resonators are patterned into the silicon layer with standard, complimentary metal–oxide–semiconductor (CMOS) compatible (Si) fabrication and measure room‐temperature, near‐infrared quality factors exceeding 105. The corresponding propagation loss is 5.7 dB cm−1. The process offers a wafer‐scalable pathway to the integration of SiC photonics into CMOS devices.more » « less
-
We present experimental results on the observation of a bulk second-order nonlinear susceptibility, derived from both free-space and integrated measurements, in silicon nitride. Phase-matching is achieved through dispersion engineering of the waveguide crosssection, independently revealing multiple components of the nonlinear susceptibility, namely χ(2)yyy = 0.14 ± 0.08 pm/V and χ(2)xxy = 0.30 ± 0.18 pm/V. Additionally, we show how the second-harmonic signal may be tuned through the application of bias voltages across silicon nitride. The material properties measured here are anticipated to allow for the realization of new nanophotonic devices in CMOS-compatible silicon nitride waveguides, adding to their viability for telecommunication, data communication, and optical signal processing applications.more » « less
-
Abstract Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128, 000%/W/cm2at 1.55μm pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR > 104and two-photon interference visibility > 98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking.more » « less
-
Abstract New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibilityχ(2)has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/Al2O3epitaxial multilayers, to overcome that limitation. This platform has an extremely highχ(2)of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10−4at an incident pulse intensity of 10 GW/cm2, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices.more » « less
An official website of the United States government
