skip to main content


Title: Degenerate optical parametric amplification in CMOS silicon

Silicon is a common material for photonics due to its favorable optical properties in the telecom and mid-wave IR bands, as well as compatibility with a wide range of complementary metal–oxide semiconductor (CMOS) foundry processes. Crystalline inversion symmetry precludes silicon from natively exhibiting second-order nonlinear optical processes. In this work, we build on recent works in silicon photonics that break this material symmetry using large bias fields, thereby enablingχ(2)interactions. Using this approach, we demonstrate both second-harmonic generation (with a normalized efficiency of 0.20%W−1cm−2) and, to our knowledge, the first degenerateχ(2)optical parametric amplifier (with an estimated normalized gain of 0.6dBW−1/2cm−1) using silicon-on-insulator waveguides fabricated in a CMOS-compatible commercial foundry. We expect this technology to enable the integration of novel nonlinear optical devices such as optical parametric amplifiers, oscillators, and frequency converters into large-scale, hybrid photonic–electronic systems by leveraging the extensive ecosystem of CMOS fabrication.

 
more » « less
Award ID(s):
2011363 1918549
NSF-PAR ID:
10402881
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
10
Issue:
4
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  2. Abstract

    The fabrication processes of silicon nitride (Si3N4) photonic devices used in foundries require low temperature deposition, which typically leads to high propagation losses. Here, it is shown that propagation loss as low as 0.42 dB cm−1can be achieved using foundry compatible processes by solely reducing waveguide surface roughness. By postprocessing the fabricated devices using rapid thermal anneal (RTA) and furnace anneal, propagation losses down to 0.28 dB cm−1and 0.06 dB cm−1, respectively, are achieved. These low losses are comparable to the conventional devices using high temperature, high‐stress LPCVD films. The dispersion of the devices is also tuned, and it is proved that these devices can be used for linear and nonlinear applications. Low threshold parametric oscillation, broadband frequency combs, and narrow‐linewidth laser are demonstrated. This work demonstrates the feasibility of scalable photonic systems based on foundries.

     
    more » « less
  3. We report on the design, fabrication, and experimental characterization of photonic crystal (PhC) nanobeam cavities with the smallest footprint, largest intrinsic quality factor, and smallest mode volume to be demonstrated to date in a monolithic CMOS platform. Two types of cavities were designed, with opposite spatial mode symmetries. The opposite mode symmetry, combined with evanescent coupling, allows the nanobeam cavities to be used in reflectionless topologies, desirable in complex photonic integrated circuits (PICs). The devices were implemented and fabricated in a 45 nm monolithic electronics–photonics CMOS platform optimized for silicon photonics (GlobalFoundries 45CLO) and do not require any post-processing. Quality factors exceeding 100 000 were measured for both devices, the highest, to the best of our knowledge, among fully cladded PhC nanobeam cavities in any silicon-on-insulator (SOI) platform. Additionally, the ability of the cavities to confine light into small mode volumes, of the order of (λ/n)3, was confirmed experimentally using near-field scanning optical microscopy (NSOM). These types of cavities are an important step toward realizing ultra-low energy active devices required for the next generation of integrated optical links beyond the current microring resonator-based links and other CMOS PICs.

     
    more » « less
  4. We present experimental results on the observation of a bulk second-order nonlinear susceptibility, derived from both free-space and integrated measurements, in silicon nitride. Phase-matching is achieved through dispersion engineering of the waveguide crosssection, independently revealing multiple components of the nonlinear susceptibility, namely χ(2)yyy = 0.14 ± 0.08 pm/V and χ(2)xxy = 0.30 ± 0.18 pm/V. Additionally, we show how the second-harmonic signal may be tuned through the application of bias voltages across silicon nitride. The material properties measured here are anticipated to allow for the realization of new nanophotonic devices in CMOS-compatible silicon nitride waveguides, adding to their viability for telecommunication, data communication, and optical signal processing applications. 
    more » « less
  5. Abstract

    New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibilityχ(2)has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/Al2O3epitaxial multilayers, to overcome that limitation. This platform has an extremely highχ(2)of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10−4at an incident pulse intensity of 10 GW/cm2, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices.

     
    more » « less