skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying day-to-day variability of O/N2 and its correlation with geomagnetic activity using GOLD
We quantify the short-term (<30 day) variability of column O/N 2 measured by GOLD from January 2019 to August 2022 for various geomagnetic activity conditions. We find enhanced variabilities at high latitudes during active (Kp ≥ 3.0) times and weak but statistically significant variabilities at low latitudes. For active times, the largest absolute variability of O/N 2 ratio is 0.14 and the largest relative variability is 20.6% at ∼60.0°N in Fall, which are about twice those of quiet times. The variability at higher latitudes can be larger than that of lower latitudes by a factor of 5–8. We further quantify contributions of magnetospheric forcing to O/N 2 variability in the Ionosphere-Thermosphere region by correlating O/N 2 perturbations with Dst. During geomagnetic active times, positive correlations as large as +0.66 and negative correlations as large as −0.65 are found at high and low latitudes, respectively, indicative of storm-induced O and N 2 upwelling at high latitudes and down welling at low latitudes. During quiet times, correlations between O/N 2 perturbations and Dst become insignificant at all latitudes, implying a more substantial contribution from below. O/N 2 variabilities maximize in Fall and decrease towards Summer, while correlations maximize in Spring/Summer and decrease in Winter/Spring, which may be related to seasonal variations of geomagnetic activity and mean circulation.  more » « less
Award ID(s):
2149695 1753214 2012994
PAR ID:
10403360
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We provide observational evidence that the stability of the stratospheric Polar vortex (PV) is a significant driver of sub‐seasonal variability in the thermosphere during geomagnetically quiet times when the PV is anomalously strong or weak. We find strong positive correlations between the Northern Annular Mode (NAM) index and subseasonal (10–90 days) Global Observations of the Limb and Disk (GOLD) O/N2perturbations at low to mid‐northern latitudes, with a largest value of +0.55 at ∼30.0°N when anomalously strong or weak (NAM >2.5 or < −2.1) vortex times are considered. Strong agreement for O/N2variability and O/N2‐NAM correlations is found between GOLD observations and the Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) simulations, which is then used to delineate the global distribution of O/N2‐NAM correlations. We find negative correlations between subseasonal variability in WACCM‐X O/N2and NAM at high northern and southern latitudes (as large as −0.54 at ∼60.0°S during anomalous vortex times). These correlations suggest that PV driven upwelling at low latitudes is accompanied by corresponding downwelling at high latitudes in the lower thermosphere (∼80–120 km), which is confirmed using calculations of residual mean meridional circulation from WACCM‐X. 
    more » « less
  2. Abstract We examine the statistical distribution of large‐scale Birkeland currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment in four unique categories of geomagnetic activity for the first time: quiet times, storm times, quiet‐time substorms, and storm‐time substorms. A novel method is employed to sort data into one of these four categories, and the categorizations are provided for future research. The mean current density is largest during substorms and its standard deviation is largest during geomagnetic storms. Current densities which are above a low threshold are more likely during substorms, but extreme currents are far more likely during geomagnetic storms, consistent with a paradigm in which geomagnetic storms represent periods of enhanced variability over quiet times. We demonstrate that extreme currents are most likely to flow within the Region 2 current during geomagnetic storms. This is unexpected in a paradigm of the current systems in which Region 1 current is generally larger. 
    more » « less
  3. Abstract We analyze daytime quiet‐time MSTIDs between 2013 and 2015 at the geomagnetic equatorial and low latitude regions of the Chilean and Argentinian Andes using keograms of detrended total electron content (dTEC). The MSTIDs had a higher occurrence rate at geomagnetic equatorial latitudes in the June solstice (winter) and spring (SON). The propagation directions changed with the season: summer (DJF) [southeast, south, southwest, and west], winter (JJA) [north and northeast], and equinoxes [north, northeast, south, southwest, and west]. In addition, the MSTIDs at low latitudes observed between 8:00 and 12:00 UT occur more often during the December solstice and propagate northwestward and northeastward. After 12:00 UT, they are mostly observed in the equinoxes and June solstice. Their predominant propagation directions depend on the season: summer (all directions with a preference for northeastward), autumn (MAM) [north and northeast], winter (north and northeast), and spring (north, northeast, and southwest). The MSTID propagation direction at different latitudes was explained by the location of the possible sources. Besides, we calculated MSTIDs parameters at geomagnetic low latitudes over the Andes Mountains and compared them with those estimated at the geomagnetic equatorial latitudes. We found that the former is smaller on average than the latter. Also, our observations validate recent model results obtained during geomagnetically quiet‐time as well as daytime MSTIDs during winter over the south of South America. These results suggest that secondary or high‐order gravity waves (GWs) from orographic forcing are the most likely source of these MSTIDs. 
    more » « less
  4. It has been shown that a proxy determination of the magnetospheric open–closed magnetic field line boundary (OCB) location can be made by examining the ultra-low-frequency (ULF) wave power in magnetometer data, with particular interest in the Pc5 ULF waves with periods of 3–10 min. In this study, we present a climatology of such Pc5 ULF waves using ground-based magnetometer data from the South Pole Station (SPA), McMurdo (MCM) station, and the Automatic Geophysical Observatories (AGOs) located across the Antarctic continent, to infer OCB behavior and variability during geomagnetically quiet times (i.e., Ap < 30 nT). For each season [i.e., austral fall (20 February 2017–20 April 2017), austral winter (20 May 2017–20 July 2017), austral spring (20 August 2017–20 October 2017), and austral summer (20 November 2017–20 January 2018)], north–south (i.e., H-component) magnetic field line residual power–spectral density (PSD) measurements taken during geomagnetically quiet periods within a 60-day window centered at the austral solstice/equinox are averaged in 10-min temporal bins to form the climatology at each station. These residual PSDs thus enable the analysis of Pc5 activity (and lower period “long-band” oscillations) and, thus, OCB location/variability as a function of season and magnetic latitude. The dawn and dusk transitions across the OCB are analyzed, with a discussion of dawn and dusk variability during nominally quiet geomagnetic periods. In addition, latitudinal dependencies of the OCB and peak Pc5 periods at each station are discussed, along with the empirical Tsyganenko model comparisons to our site measurements. 
    more » « less
  5. Abstract Geomagnetically induced currents (GICs) at middle latitudes have received increased attention after reported power grid disruptions due to geomagnetic disturbances. However, quantifying the risk to the electric power grid at middle latitudes is difficult without understanding how the GIC sensors respond to geomagnetic activity on a daily basis. Therefore, in this study the question “Do measured GICs have distinguishable and quantifiable long‐period and short‐period characteristics?” is addressed. The study focuses on the long‐term variability of measured GIC, and establishes the extent to which the variability relates to quiet‐time geomagnetic activity. GIC quiet‐day curves (QDCs) are computed from measured data for each GIC node, covering all four seasons, and then compared with the seasonal variability of thermosphere‐ionosphere‐electrodynamics general circulation model (TIE‐GCM)‐simulated neutral wind and height‐integrated current density. The results show strong evidence that the middle‐latitude nodes routinely respond to the tidal‐driven Sq variation, with a local time and seasonal dependence on the direction of the ionospheric currents, which is specific to each node. The strong dependence of GICs on the Sq currents demonstrates that the GIC QDCs may be employed as a robust baseline from which to quantify the significance of GICs during geomagnetically active times and to isolate those variations to study independently. The QDC‐based significance score computed in this study provides power utilities with a node‐specific measure of the geomagnetic significance of a given GIC observation. Finally, this study shows that the power grid acts as a giant sensor that may detect ionospheric current systems. 
    more » « less