Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision, which largely reduces human annotation efforts. Most existing methods first use the label names as static keyword-based features to generate pseudo labels, which are then used for final classifier training. While reasonable, such a commonly adopted framework suffers from two limitations: (1) keywords can have different meanings in different contexts and some text may not have any keyword, so keyword matching can induce noisy and inadequate pseudo labels; (2) the errors made in the pseudo label generation stage will directly propagate to the classifier training stage without a chance of being corrected. In this paper, we propose a new method, PIEClass, consisting of two modules: (1) a pseudo label acquisition module that uses zero-shot prompting of pre-trained language models (PLM) to get pseudo labels based on contextualized text understanding beyond static keyword matching, and (2) a noise-robust iterative ensemble training module that iteratively trains classifiers and updates pseudo labels by utilizing two PLM fine-tuning methods that regularize each other. Extensive experiments show that PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets and even achieves similar performance to fully-supervised classifiers on sentiment classification tasks.
more »
« less
LOPS: Learning Order Inspired Pseudo-Label Selection for Weakly Supervised Text Classification
Weakly supervised text classification methods typically train a deep neural classifier based on pseudo-labels. The quality of pseudo-labels is crucial to final performance but they are inevitably noisy due to their heuristic nature, so selecting the correct ones has a huge potential for performance boost. One straightforward solution is to select samples based on the softmax probability scores in the neural classifier corresponding to their pseudo-labels. However, we show through our experiments that such solutions are ineffective and unstable due to the erroneously high-confidence predictions from poorly calibrated models. Recent studies on the memorization effects of deep neural models suggest that these models first memorize training samples with clean labels and then those with noisy labels. Inspired by this observation, we propose a novel pseudo-label selection method LOPS that takes learning order of samples into consideration. We hypothesize that the learning order reflects the probability of wrong annotation in terms of ranking, and therefore, propose to select the samples that are learnt earlier. LOPS can be viewed as a strong performance-boost plug-in to most existing weakly-supervised text classification methods, as confirmed in extensive experiments on four real-world datasets.
more »
« less
- Award ID(s):
- 2040727
- PAR ID:
- 10403515
- Date Published:
- Journal Name:
- Findings of the Association for Computational Linguistics: EMNLP 2022
- Page Range / eLocation ID:
- 4894–4908
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semisupervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.more » « less
-
We study the problem of weakly supervised text classification, which aims to classify text documents into a set of pre-defined categories with category surface names only and without any annotated training document provided. Most existing classifiers leverage textual information in each document. However, in many domains, documents are accompanied by various types of metadata (e.g., authors, venue, and year of a research paper). These metadata and their combinations may serve as strong category indicators in addition to textual contents. In this paper, we explore the potential of using metadata to help weakly supervised text classification. To be specific, we model the relationships between documents and metadata via a heterogeneous information network. To effectively capture higher-order structures in the network, we use motifs to describe metadata combinations. We propose a novel framework, named MotifClass, which (1) selects category-indicative motif instances, (2) retrieves and generates pseudo-labeled training samples based on category names and indicative motif instances, and (3) trains a text classifier using the pseudo training data. Extensive experiments on real-world datasets demonstrate the superior performance of MotifClass to existing weakly supervised text classification approaches. Further analysis shows the benefit of considering higher-order metadata information in our framework.more » « less
-
Existing backdoor defense methods are only effective for limited trigger types. To defend different trigger types at once, we start from the class-irrelevant nature of the poisoning process and propose a novel weakly supervised backdoor defense framework WeDef. Recent advances in weak supervision make it possible to train a reasonably accurate text classifier using only a small number of user-provided, class-indicative seed words. Such seed words shall be considered independent of the triggers. Therefore, a weakly supervised text classifier trained by only the poisoned documents without their labels will likely have no backdoor. Inspired by this observation, in WeDef, we define the reliability of samples based on whether the predictions of the weak classifier agree with their labels in the poisoned training set. We further improve the results through a two-phase sanitization: (1) iteratively refine the weak classifier based on the reliable samples and (2) train a binary poison classifier by distinguishing the most unreliable samples from the most reliable samples. Finally, we train the sanitized model on the samples that the poison classifier predicts as benign. Extensive experiments show that WeDef is effective against popular trigger-based attacks (e.g., words, sentences, and paraphrases), outperforming existing defense methods.more » « less
-
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)Learning from noisy labels is a long-standing problem in machine learning for real applications. One of the main research lines focuses on learning a label corrector to purify potential noisy labels. However, these methods typically rely on strict assumptions and are limited to certain types of label noise. In this paper, we reformulate the label-noise problem from a generative-model perspective, i.e., labels are generated by gradually refining an initial random guess. This new perspective immediately enables existing powerful diffusion models to seamlessly learn the stochastic generative process. Once the generative uncertainty is modeled, we can perform classification inference using maximum likelihood estimation of labels. To mitigate the impact of noisy labels, we propose Label-Retrieval- Augmented (LRA) diffusion model 1, which leverages neighbor consistency to effectively construct pseudo-clean labels for diffusion training. Our model is flexible and general, allowing easy incorporation of different types of conditional information, e.g., use of pre-trained models, to further boost model performance. Extensive experiments are conducted for evaluation. Our model achieves new state-of-the-art (SOTA) results on all standard real-world benchmark datasets. Remarkably, by incorporating conditional information from the powerful CLIP model, our method can boost the current SOTA accuracy by 10-20 absolute points in many cases.more » « less
An official website of the United States government

