- Award ID(s):
- 1946231
- PAR ID:
- 10403739
- Date Published:
- Journal Name:
- Smart Materials and Structures
- Volume:
- 31
- Issue:
- 10
- ISSN:
- 0964-1726
- Page Range / eLocation ID:
- 105014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Engineering applications of current thermoset shape memory polymers are limited by three critical issues: demanding fabrication conditions (from 70 to 300 °C temperatures for hours or days), lack of reprocessability or recyclability, and low recovery stress and energy output. To address these problems simultaneously, a new UV curable and vitrimer-based epoxy thermoset shape memory polymer (VSMP) has been synthesized. A 1.1 mm thick VSMP film can be readily cured at room temperature under UV-irradiation (61 mW cm −2 ) in just 80 s. It possesses 36.7 MPa tensile strength, 230 MPa compressive strength, and 3120 MPa modulus at room temperature. It still has a compressive strength of 187 MPa at 120 °C. The covalent adaptable network (CAN) imparts the VSMP with recyclability, as reflected by two effective recycling cycles (>60% recycling efficiency). In addition, the VSMP exhibits good shape memory properties for multiple shape recovery cycles. With 20% compression programming strain, up to 13.4 MPa stable recovery stress and 1.05 MJ m −3 energy output in the rubbery state are achieved. With good mechanical strength, thermal stability, recyclability, and excellent shape memory properties combined with in situ UV-curing capabilities, the new VSMP is a promising multifunctional thermoset for engineering applications.more » « less
-
Abstract We analyzed the effects of crosslinking fraction and number of functional sites per hardener molecule on the stress recovery and topology of thermoset shape memory polymers (TSMPs) via coarse-grained molecular dynamics simulations. After systematically varying the quality of the crosslinked network by manipulating the number of unique epoxies reacted with each hardener, we found that two fingerprints correlate well with stress recovery of TSMPs. These fingerprints are the fraction of epoxy molecules connected to two distinct hardener molecules, and the fraction of molecules that are part of the largest or main network in the system. Their product can be used as a topological score (
) to quantify the topological feature of the network. When analyzing stress recovery as a function of , we found a strong correlation between and recovery stress. Moreover, we observed that while a higher crosslinking fraction did frequently lead to a higher stress recovery, many exceptions existed. High functionality hardeners tend to exhibit higher stress recovery at similar , especially at high (>0.65) . These results suggest that increasing the number of functional sites per hardener molecule combined with improving the topology of the network with a method such as semi batch monomer addition can lead to an improvement in the stress recovery of TSMPs. -
Soft porous nanocrystals with a pronounced shape-memory effect exhibit two- to three-fold increase in elastic modulus compared to the microcrystalline counterpart as determined by atomic force microscopy nanoindentation. The increase in rigidity is consistent with the known shape-memory effect displayed by the framework solid at the nanoscale. Crystal downsizing can offer new avenues for tailoring the mechanical properties of metal–organic frameworks.more » « less
-
Abstract Cultivated natural fibers have a huge possibility for green and sustainable reinforcement for polymers, but their limited load-bearing ability and flammability prevent them from wide applications in composites. According to the beam theory, normal stress is the maximum at the outermost layers but zero at the mid-plane under bending (with (non)linear strain distribution). Shear stress is the maximum at the mid-plane but manageable for most polymers. Accordingly, a laminated composite made of hybrid fiber-reinforced shape memory photopolymer was developed, incorporating strong synthetic glass fibers over a weak core of natural hemp fibers. Even with a significant proportion of natural hemp fibers, the mechanical properties of the hybrid composites were close to those reinforced solely with glass fibers. The composites exhibited good shape memory properties, with at least 52% shape fixity ratio and 71% shape recovery ratio, and 24 MPa recovery stress. After 40 s burning, a hybrid composite still maintained 83.53% of its load carrying capacity. Therefore, in addition to largely maintaining the load carrying capacity through the hybrid reinforcement design, the use of shape memory photopolymer endowed a couple of new functionalities to the composites: the plastically deformed laminated composite beam can largely return to its original shape due to the shape memory effect of the polymer matrix, and the flame retardancy of the polymer matrix makes the flammable hemp fiber survive the fire hazard. The findings of this study present exciting prospects for utilizing low-strength and flammable natural fibers in multifunctional load-bearing composites that possess both flame retardancy and shape memory properties.
-
Abstract High-performance lightweight architectures, such as metallic microlattices with excellent mechanical properties have been 3D printed, but they do not possess shape memory effect (SME), limiting their usages for advanced engineering structures, such as serving as a core in multifunctional lightweight sandwich structures. 3D printable self-healing shape memory polymer (SMP) microlattices could be a solution. However, existing 3D printable thermoset SMPs are limited to either low strength, poor stress memory, or non-recyclability. To address this issue, a new thermoset polymer, integrated with high strength, high recovery stress, perfect shape recovery, good recyclability, and 3D printability using direct light printing, has been developed in this study. Lightweight microlattices with various unit cells and length scales were printed and tested. The results show that the cubic microlattice has mechanical strength comparable to or even greater than that of metallic microlattices, good SME, decent recovery stress, and recyclability, making it the first multifunctional lightweight architecture (MLA) for potential multifunctional lightweight load carrying structural applications.