Abstract In an era where air pollution poses a significant threat to both the environment and public health, we present a network-based approach to unravel the dynamics of extreme pollution events. Leveraging data from 741 monitoring stations in the contiguous United States, we have created dynamic networks using time-lagged correlations of hourly particulate matter (PM2.5) data. The established spatial correlation networks reveal significant PM2.5anomalies during the 2020 and 2021 wildfire seasons, demonstrating the approach’s sensitivity to detecting regional pollution phenomena. The methodology also provides insights into smoke transport and network response, highlighting the persistence of air quality issues beyond visible smoke periods. Additionally, we explored meteorological variables’ impacts on network connectivity. This study enhances understanding of spatiotemporal pollution patterns, positioning spatial correlation networks as valuable tools for environmental monitoring and public health surveillance. 
                        more » 
                        « less   
                    
                            
                            Spatiotemporal health surveillance accounting for risk factors and spatial correlation
                        
                    
    
            Abstract Most of the current public health surveillance methods used in epidemiological studies to identify hotspots of diseases assume that the regional disease case counts are independently distributed and they lack the ability of adjusting for confounding covariates. This article proposes a new approach that uses a simultaneous autoregressive (SAR) model, a popular spatial regression approach, within the classical space‐time cumulative sum (CUSUM) framework for detecting changes in the spatial distribution of count data while accounting for risk factors and spatial correlation. We develop expressions for the likelihood ratio test monitoring statistics based on a SAR model with covariates, leading to the proposed space‐time CUSUM test statistic. The effectiveness of the proposed monitoring approach in detecting and identifying step shifts is studied by simulation of various shift scenarios in regional counts. A case study for monitoring regional COVID‐19 infection counts while adjusting for social vulnerability, often correlated with a community's susceptibility towards disease infection, is presented to illustrate the application of the proposed methodology in public health surveillance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2101091
- PAR ID:
- 10403861
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Quality and Reliability Engineering International
- ISSN:
- 0748-8017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Turner, Richard (Ed.)Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R 2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. Conclusions Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines.more » « less
- 
            Abstract Traditional health surveillance methods play a critical role in public health safety but are limited by the data collection speed, coverage, and resource requirements. Wastewater‐based epidemiology (WBE) has emerged as a cost‐effective and rapid tool for detecting infectious diseases through sewage analysis of disease biomarkers. Recent advances in big data analytics have enhanced public health monitoring by enabling predictive modeling and early risk detection. This paper explores the application of machine learning (ML) in WBE data analytics, with a focus on infectious disease surveillance and forecasting. We highlight the advantages of ML‐driven WBE prediction models, including their ability to process multimodal data, predict disease trends, and evaluate policy impacts through scenario simulations. We also examine challenges such as data quality, model interpretability, and integration with existing public health infrastructure. The integration of ML WBE data analytics enables rapid health data collection, analysis, and interpretation that are not feasible in current surveillance approaches. By leveraging ML and WBE, decision makers can reduce cognitive biases and enhance data‐driven responses to public health threats. As global health risks evolve, the synergy between WBE, ML, and data‐driven decision‐making holds significant potential for improving public health outcomes.more » « less
- 
            The detection of disease clusters in spatial data analysis plays a crucial role in public health, while the circular scan method is widely utilized for this purpose, accurately identifying non-circular (irregular) clusters remains challenging and reduces detection accuracy. To overcome this limitation, various extensions have been proposed to effectively detect arbitrarily shaped clusters. In this paper, we combine the strengths of two well-known methods, the flexible and elliptic scan methods, which are specifically designed for detecting irregularly shaped clusters. We leverage the unique characteristics of these methods to create candidate zones capable of accurately detecting irregularly shaped clusters, along with a modified likelihood ratio test statistic. By inheriting the advantages of the flexible and elliptic methods, our proposed approach represents a practical addition to the existing repertoire of spatial data analysis techniques.more » « less
- 
            The effectiveness of digital contact tracing during extended outbreaks of airborne infectious diseases, such as COVID-19, influenza, or RSV, can be hindered by limited social compliance and delays in real-world testing. Prior work has shown the utility of graph learning for bidirectional contact tracing and multi-agent reinforcement learning (MARL) for disease mitigation; however, they rely on post-hoc analysis and full testing compliance, thus limiting real-time applicability. To address these limitations, we propose a new framework for online automated bidirectional contact tracing and disease-aware navigation. Our framework iteratively identifies infectious culprits, infers individual health statuses, and deploys agents to minimize infectious exposure without requiring Oracle health information. Our proposed framework achieves an average online backwards tracing F1-score of 92% and estimates the total case counts within 5% accuracy, even under conditions of probabilistic testing with significant social hesitancy. Additionally, our proposed agent-based navigation system can reduce the disease spread by 29%. These results demonstrate the framework’s potential to address critical gaps in traditional disease surveillance and mitigation models and improve real-time public health interventions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
