skip to main content


Title: Adaptive flow-induced vibration control using distributed sensor/actuator networks with gated recurrent units and genetic algorithms
This work presents a control scheme for wind-induced vibration mitigation for tall buildings based on a gated recurrent unit (GRU) encoder-decoder model which operates using readings from multiple sensors to define a unique system state. The sensors include a distributed network of pressure probes installed on surrounding buildings, accelerometers installed on the principal building, and atmospheric conditions. The encoder-decoder GRU is trained from timeseries sensor readings to construct a unique internal representation (hidden state) of the evolving wind and building conditions. A 1:400-scale aeroelastic building model with motorized plates acting as aerodynamic control surfaces is used in wind tunnel experiments to conduct this study. An online genetic reinforcement learning (GRL) algorithm uses a series of multilayer perceptron (MLP) networks to determine optimum actuator orientations for different flow conditions. The algorithm stores previously discovered solutions in the MLPs sorted by their fitness. The GA operates by obtaining a solution from each of the MLPs and performing GA operations on them to choose the next combination of plate angles to try. A chance also exists for trying completely random plate angles to prevent the GA from stalling. The MLPs are continuously trained during online optimization using findings obtained from new trials. The system eliminates the need for holding wind conditions, which are uncontrollable, constant during online training but still uses a pseudo-random search technique to obtain global optimum solutions. Results show a considerable reduction in building RMS acceleration when compared with a large collection of results with random constant plate angle orientations.  more » « less
Award ID(s):
1826364
NSF-PAR ID:
10403945
Author(s) / Creator(s):
;
Editor(s):
Zonta, Daniele; Su, Zhongqing; Glisic, Branko
Date Published:
Journal Name:
SPIE 12046, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2022
Volume:
12046
Page Range / eLocation ID:
121-130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tall and slender buildings often endure disturbances resulting from winds composed of various mean and fluctuating velocities. These disturbances result in discomfort for the occupants as well as accelerated fatigue life cycles and premature fatigue failures in the building. This work presents the development of a smart morphing façade (Smorphaçade) system that dynamically alters a buildings’ external shape or texture to minimize the effect of wind-induced vibrations on the building. The Smorphacade system is represented in this work by a series of plates that vary their orientation by means of a central controller module. To validate the simulation, a simple NACA0012 airfoil is simulated in a stream of air at a Reynolds number (RE) of 2 million. The pressure and viscous force profiles are captured to plot the variation of the lift force for different angles of attack that are then validated using published experimental airfoil data. After validation, the airfoil is attached to a linear spring-damper combination and is allowed to translate vertically without rotation according to the force profile captured from the surrounding air stream. A PID controller is developed to equilibrate the vertical position of the airfoil by altering its angle of attack. The model and its utility functions are implemented as an OpenFOAM® module (MSLSolid). Thereafter, the model is expanded to handle a planar case of a building floor carrying 4 controllable plates. The forces on the building profile are summed at the centroid of the building and the windward rigid body motion of the floor is estimated by reflecting the horizontal force component on a Finite Element (FE) model of the building. The time series information of the force acting on the building and the resulting oscillations are captured for exhaustive combinations of the plate angles. This data is used to build a lookup table that gives the best plate configuration for a given wind condition. A controller operates in real-time by searching the lookup table using readings of the wind condition. Preliminary results show a 94% reduction in the amplitudes of wind-induced vibrations. 
    more » « less
  2. Hazardous atmospheric icing conditions occur at sub-zero temperatures when droplets come into contact with aircraft and freeze, degrading aircraft performance and handling, introducing bias into some of the vital measurements needed for aircraft operation (e.g., air speed). Nonetheless, government regulations allow certified aircraft to fly in limited icing environments. The capability of aircraft sensors to identify all hazardous icing environments is limited. To address the current challenges in aircraft icing detection and protection, we present herein a platform designed for in-flight testing of ice protection solutions and icing detection technologies. The recently developed Platform for Ice-accretion and Coatings Tests with Ultrasonic Readings (PICTUR) was evaluated using CFD simulations and installed on the National Research Council Canada (NRC) Convair-580 aircraft that has flown in icing conditions over North East USA, during February 2022. This aircraft is a flying laboratory, equipped with more than 40 sensors providing a comprehensive characterization of the flight environment including measurements of temperature, pressure, wind speed and direction, water droplet size and number distribution, and hydrometeor habits imagery. The flight tests of the platform included assessment of passive icephobic coatings as well as heat-assisted tests. Monitoring tools included visual high resolution, real-time inspection of the surface as well as detection of surface ice using NRC’s Ultrasonic Ice Accretion Sensors (UIAS). In this paper, we present the new platform and show some preliminary commissioning results of PICTUR, collected inflight under, predominantly, supercooled small droplets and supercooled large drops (SLD) icing conditions. The combination of the platform and the complementary sensors on the aircraft demonstrated an effective and unique technique for icing studies in a natural environment.

     
    more » « less
  3. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less
  4. Objective: In this study, we aimed to develop a novel electromyography (EMG)-based neural machine interface (NMI), called the Neural Network-Musculoskeletal hybrid Model (N2M2), to decode continuous joint angles. Our approach combines the concepts of machine learning and musculoskeletal modeling. Methods: We compared our novel design with a musculoskeletal model (MM) and 2 continuous EMG decoders based on artificial neural networks (ANNs): multilayer perceptrons (MLPs) and nonlinear autoregressive neural networks with exogenous inputs (NARX networks). EMG and joint kinematics data were collected from 10 non-disabled and 1 transradial amputee subject. The offline performance tested across 3 different conditions (i.e., varied arm postures, shifted electrode locations, and noise-contaminated EMG signals) and online performance for a virtual postural matching task was quantified. Finally, we implemented the N2M2 to operate a prosthetic hand and tested functional task performance. Results: The N2M2 made more accurate predictions than the MLP in all postures and electrode locations (p < 0.003). For estimated MCP joint angles, the N2M2 was less sensitive to noisy EMG signals than the MM or NARX network with respect to error (p < 0.032) as well as the NARX network with respect to correlation (p = 0.007). Additionally, the N2M2 had better online task performance than the NARX network (p ≤ 0.030). Conclusion: Overall, we have found that combining the concepts of machine learning and musculoskeletal modeling has resulted in a more robust joint kinematics decoder than either concept individually. Significance: The outcome of this study may result in a novel, highly reliable controller for powered prosthetic hands. 
    more » « less
  5. Abstract

    Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded. In this work, we present an approach to deep learning for time-varying systems that does not require re-training, but uses instead an adaptive feedback in the architecture of deep convolutional neural networks (CNN). The feedback is based only on available system output measurements and is applied in the encoded low-dimensional dense layers of the encoder-decoder CNNs. First, we develop an inverse model of a complex accelerator system to map output beam measurements to input beam distributions, while both the accelerator components and the unknown input beam distribution vary rapidly with time. We then demonstrate our method on experimental measurements of the input and output beam distributions of the HiRES ultra-fast electron diffraction (UED) beam line at Lawrence Berkeley National Laboratory, and showcase its ability for automatic tracking of the time varying photocathode quantum efficiency map. Our method can be successfully used to aid both physics and ML-based surrogate online models to provide non-invasive beam diagnostics.

     
    more » « less