With multi-agent teams becoming more of a reality every day, it is important to create a common design model for multi-agent teams. These teams need to be able to function in dynamic environments and still communicate with any humans that may need a problem solved. Existing human-agent research can be used to purposefully create multi-agent teams that are interdependent but can still interact with humans. Rather than creating dynamic agents, the most effective way to overcome the dynamic nature of modern workloads is to create a dynamic team configuration, rather than individual member-agents that can change their roles. Multi-agent teams will require a variety of agents to be designed to cover a diverse subset of problems that need to be solved in the modern workforce. A model based on existing multi-agent teams that satisfies the needs of human-agent teams has been created to serve as a baseline for human-interactive multi-agent teams.
more »
« less
TIP: A Trust Inference and Propagation Model in Multi-Human Multi-Robot Teams
Trust has been identified as a central factor for effective human-robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human agents and multiple robotic agents. To fill this research gap, we present the trust inference and propagation (TIP) model for trust modeling in multi-human multi-robot teams. We assert that in a multi-human multi-robot team, there exist two types of experiences that any human agent has with any robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (N=30). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.
more »
« less
- Award ID(s):
- 2045009
- PAR ID:
- 10404091
- Date Published:
- Journal Name:
- HRI '23: Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction
- Page Range / eLocation ID:
- 639 to 643
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion.more » « less
-
Multi-Agent Path Finding (MA-PF) computes a set of collision-free paths for multiple agents from their respective starting locations to destinations. This paper considers a generalization of MA-PF called Multi-Agent Teamwise Cooperative Path Finding (MA-TC-PF), where agents are grouped as multiple teams and each team has its own objective to be minimized. For example, an objective can be the sum or max of individual arrival times of the agents. In general, there is more than one team, and MA-TC-PF is thus a multi-objective planning problem with the goal of finding the entire Paretooptimal front that represents all possible trade-offs among the objectives of the teams. To solve MA-TC-PF, we propose two algorithms TC-CBS and TC-M*, which leverage the existing CBS and M* for conventional MA-PF. We discuss the conditions under which the proposed algorithms are complete and are guaranteed to find the Pareto-optimal front. We present numerical results for several types of MA-TC-PF problems.more » « less
-
null (Ed.)Cooperative Co-evolutionary Algorithms effectively train policies in multiagent systems with a single, statically defined team. However, many real-world problems, such as search and rescue, require agents to operate in multiple teams. When the structure of the team changes, these policies show reduced performance as they were trained to cooperate with only one team. In this work, we solve the cooperation problem by training agents to fill the needs of an arbitrary team, thereby gaining the ability to support a large variety of teams. We introduce Ad hoc Teaming Through Evolution (ATTE) which evolves a limited number of policy types using fitness aggregation across multiple teams. ATTE leverages agent types to reduce the dimensionality of the interaction search space, while fitness aggregation across teams selects for more adaptive policies. In a simulated multi-robot exploration task, ATTE is able to learn policies that are effective in a variety of teaming schemes, improving the performance of CCEA by a factor of up to five times.more » « less
-
Sensor coverage is the critical multi-robot problem of maximizing the detection of events in an environment through the deployment of multiple robots. Large multi-robot systems are often composed of simple robots that are typically not equipped with a complete set of sensors, so teams with comprehensive sensing abilities are required to properly cover an area. Robots also exhibit multiple forms of relationships (e.g., communication connections or spatial distribution) that need to be considered when assigning robot teams for sensor coverage. To address this problem, in this paper we introduce a novel formulation of sensor coverage by multi-robot systems with heterogeneous relationships as a graph representation learning problem. We propose a principled approach based on the mathematical framework of regularized optimization to learn a unified representation of the multi-robot system from the graphs describing the heterogeneous relationships and to identify the learned representation’s underlying structure in order to assign the robots to teams. To evaluate the proposed approach, we conduct extensive experiments on simulated multi-robot systems and a physical multi-robot system as a case study, demonstrating that our approach is able to effectively assign teams for heterogeneous multi-robot sensor coverage.more » « less