skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The Dark Energy Camera Plane Survey 2 (DECaPS2): More Sky, Less Bias, and Better Uncertainties
Abstract Deep optical and near-infrared imaging of the entire Galactic plane is essential for understanding our Galaxy’s stars, gas, and dust. The second data release of the Dark Energy Camera (DECam) Plane Survey extends the five-band optical and near-infrared survey of the southern Galactic plane to cover 6.5% of the sky, ∣ b ∣ ≤ 10°, and 6° > ℓ > −124°, complementary to coverage by Pan-STARRS1. Typical single-exposure effective depths, including crowding effects and other complications, are 23.5, 22.6, 22.1, 21.6, and 20.8 mag in g , r , i , z , and Y bands, respectively, with around 1″ seeing. The survey comprises 3.32 billion objects built from 34 billion detections in 21,400 exposures, totaling 260 hr open shutter time on the DECam at Cerro Tololo. The data reduction pipeline features several improvements, including the addition of synthetic source injection tests to validate photometric solutions across the entire survey footprint. A convenient functional form for the detection bias in the faint limit was derived and leveraged to characterize the photometric pipeline performance. A new postprocessing technique was applied to every detection to debias and improve uncertainty estimates of the flux in the presence of structured backgrounds, specifically targeting nebulosity. The images and source catalogs are publicly available at http://decaps.skymaps.info/ .  more » « less
Award ID(s):
2019786
PAR ID:
10404308
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
264
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform. 
    more » « less
  2. Abstract Palomar Gattini-IR (PGIR) is a wide-field, synoptic infrared time domain survey covering ≈15,000 sq. deg. of the accessible sky at ≈1–3 night cadence to a depth ofJ≈ 13.0 and ≈14.9 Vega mag in and outside the Galactic plane, respectively. Here, we present the first data release ofJ-band light curves of Two Micron All Sky Survey (2MASS) sources within the survey footprint covering approximately the first four years of operations. We describe the construction of the source catalog based on 2MASS point sources, followed by exposure filtering criteria and forced PSF photometry. The catalog contains light curves of ≈286 million unique sources with 2MASS magnitudes ofJ< 15.5 mag, with a total of ≈50 billion photometric measurements and ≈20 billion individual source detections at signal-to-noise-ratio > 3. We demonstrate the photometric fidelity of the catalog by (i) quantifying the magnitude-dependent accuracy and uncertainty of the photometry with respect to 2MASS and (ii) comparing against forced PGIR aperture photometry for known variable sources. We present simple filtering criteria for selecting reliable photometric measurements as well as examplePythonnotebooks for users. This catalog is one of the largest compilation of nightly cadence, synoptic infrared light curves to date, comparable to those in the largest optical surveys, providing a stepping stone to upcoming infrared surveys in the coming decade. 
    more » « less
  3. Abstract We present photometric evidence for multiple stellar populations (MPs) in 14 globular clusters (GCs) toward the southern Galactic bulge. The photometric data come as part of the Blanco DECam Bulge Survey, which is a deep, wide-field near-UV-near-IR ( ugriz Y) survey of the southern Galactic bulge. Here, we present the first systematic study of bulge GC multiple populations with deep photometry including the u band, which is a crucial indicator of the abundance of CNO-bearing molecules in stellar atmospheres. We identify cluster members using Gaia EDR3 proper motion measurements, and then isolate red giant branch stars using r versus u − r color–magnitude diagrams. We find evidence suggesting all 14 clusters host at least two populations, and NGC 6441, NGC 6626, and NGC 6656 appear to have at least three populations. Many of these clusters are not part of the Hubble Space Telescope (HST) surveys nor do they have comprehensive spectroscopic analyses so we are presenting the first evidence of MPs in several clusters. Not only do we find a strong anticorrelation between the fraction of first-generation stars and cluster absolute V magnitude, but the correlation coefficient and cluster-to-cluster scatter are similar to the results obtained from HST. Our ground-based data extend to much larger radial distances than similar HST observations, enabling a reliable estimate of the global fraction of first-generation stars in each cluster. This study demonstrates that ground-based u -band photometry as provided by DECam will prove powerful in the study of multiple populations in resolved GCs. 
    more » « less
  4. Abstract The Massive and Distant Clusters of WISE Survey 2 (MaDCoWS2) is a new survey designed as the successor of the original MaDCoWS survey. MaDCoWS2 improves upon its predecessor by using deeper optical and infrared data and a more powerful detection algorithm (PZWav). As input to the search, we usegrzphotometry from the DECam Legacy Survey (DECaLS) in combination with W1 and W2 photometry from the CatWISE2020 catalog to derive the photometric redshifts with full redshift probability distribution functions for Wide-field Infrared Survey Explorer (WISE)-selected galaxies. Cluster candidates are then detected using the PZWav algorithm to find three-dimensional galaxy overdensities from the sky positions and photometric redshifts. This paper provides the first MaDCoWS2 data release, covering 1461 (1838 without masking) deg2centered on the Hyper-SuprimeCam Subaru Strategic Program equatorial fields. Within this region, we derive a catalog of 22,970 galaxy cluster candidates detected at a signal-to-noise ratio (S/N) > 5. These clusters span the redshift range 0.1 <z< 2, including 1312 candidates atz> 1.5. We compare MaDCoWS2 to six existing catalogs in the area. We rediscover 60%–92% of the clusters in these surveys at S/N > 5. The medians of the absolute redshift offset are <0.02 relative to these surveys, while the standard deviations are less than 0.06. The median offsets between the detection position from MaDCoWS2 and other surveys are less than 0.25 Mpc. We quantify the relation between S/N and gas mass, total mass, luminosity, and richness from other surveys using a redshift-dependent power law relation. We find that the S/N-richness relation exhibits the lowest scatter. 
    more » « less
  5. ABSTRACT This paper presents a new optical imaging survey of four deep drilling fields (DDFs), two Galactic and two extragalactic, with the Dark Energy Camera (DECam) on the 4-m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO). During the first year of observations in 2021, >4000 images covering 21 deg2 (seven DECam pointings), with ∼40 epochs (nights) per field and 5 to 6 images per night per filter in g, r, i, and/or z have become publicly available (the proprietary period for this program is waived). We describe the real-time difference-image pipeline and how alerts are distributed to brokers via the same distribution system as the Zwicky Transient Facility (ZTF). In this paper, we focus on the two extragalactic deep fields (COSMOS and ELAIS-S1) characterizing the detected sources, and demonstrating that the survey design is effective for probing the discovery space of faint and fast variable and transient sources. We describe and make publicly available 4413 calibrated light curves based on difference-image detection photometry of transients and variables in the extragalactic fields. We also present preliminary scientific analysis regarding the Solar system small bodies, stellar flares and variables, Galactic anomaly detection, fast-rising transients and variables, supernovae, and active Galactic nuclei. 
    more » « less