skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local cation order and ferrimagnetism in compositionally complex spinel ferrites
We present an exploration of a family of compositionally complex cubic spinel ferrites featuring combinations of Mg, Fe, Co, Ni, Cu, Mn, and Zn cations, systematically investigating the average and local atomic structures, chemical short-range order, magnetic spin configurations, and magnetic properties. All compositions result in ferrimagnetic average structures with extremely similar local bonding environments; however, the samples display varying degrees of cation inversion and, therefore, differing apparent bulk magnetization. Additionally, first-order reversal curve analysis of the magnetic reversal behavior indicates varying degrees of magnetic ordering and interactions, including potentially local frustration. Finally, reverse Monte Carlo modeling of the spin orientation demonstrates a relationship between the degree of cation inversion and the spin collinearity. Collectively, these observations correlate with differences in synthesis procedures. This work provides a framework for understanding magnetic behavior reported for “high-entropy spinels,” revealing many are likely compositionally complex oxides with differing degrees of chemical short-range order—not meeting the community established criteria for high or medium entropy compounds. Moreover, this work highlights the importance of reporting complete sample processing histories and investigating local to long-range atomic arrangements when evaluating potential entropic mixing effects and assumed property correlations in high entropy materials.  more » « less
Award ID(s):
2145174
PAR ID:
10404371
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
12
ISSN:
2166-532X
Page Range / eLocation ID:
121102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In compositionally complex materials, there is controversy on the effect of enthalpy versus entropy on the structure and short-range ordering in so-called high-entropy materials. To help address this controversy, we synthesized and probed 40 M4AlC3 layered carbide phases containing 2 to 9 metals and found that short-range ordering from enthalpy is present until the entropy increases enough to achieve complete disordering of the transition metals in their atomic planes. We transformed all these layered carbide phases into two-dimensional (2D) sheets and showed the effects of the order vs. disorder on their surface properties and electronic behavior. This study suggests the key effect that the competition between enthalpy and entropy has on short-range order in multi-compositional materials. 
    more » « less
  2. The presence of short-range chemical order can be a key factor in determining the mechanical behavior of metals, but directly and unambiguously determining its distribution in complex concentrated alloy systems can be challenging. Here, we directly identify and quantify chemical order in the globally single phase BCC-TiVNbHf(Al) system using aberration corrected scanning transmission electron microscopy (STEM) paired with spatial statistics methods. To overcome the difficulties of short-range order (SRO) quantification with STEM when the components of an alloy exhibit large atomic number differences and near equiatomic ratios, “null hypothesis” tests are used to separate experiment from a random chemical distribution. Experiment is found to deviate from both the case of an ideal random solid solution and a fully ordered structure with statistical significance. We also identify local chemical order in TiVNbHf and confirm and quantify the enhancement of SRO with the addition of Al. These results provide insight into local chemical order in the promising TiVNbHf(Al) refractory alloys while highlighting the utility of spatial statistics in characterizing nanoscale SRO in compositionally complex systems. 
    more » « less
  3. Compositionally complex oxides (CCOs) are an emerging class of materials encompassing high entropy and entropy stabilized oxides. These promising advanced materials leverage tunable chemical bond structure, lattice distortion, and chemical disorder for unprecedented properties. Grain boundary (GB) and point defect segregation to GBs are relatively understudied in CCOs even though they can govern macroscopic material properties. For example, GB segregation can govern local chemical (dis)order and point defect distribution, playing a critical role in electrochemical reaction kinetics, and charge and mass transport in solid electrolytes. However, compared with conventional oxides, GBs in multi-cation CCO systems are expected to exhibit more complex segregation phenomena and, thus, prove more difficult to tune through GB design strategies. Here, GB segregation was studied in a model perovskite CCO LaFe0.7Ni0.1Co0.1Cu0.05Pd0.05O3−x textured thin film by (sub-)atomic-resolution scanning transmission electron microscopy imaging and spectroscopy. It is found that GB segregation is correlated with cation reducibility—predicted by an Ellingham diagram—as Pd and Cu segregate to GBs rich in oxygen vacancies (VO··). Furthermore, Pd and Cu segregation is highly sensitive to the concentration and spatial distribution of VO·· along the GB plane, as well as fluctuations in atomic structure and elastic strain induced by GB local disorder, such as dislocations. This work offers a perspective of controlling segregation concentration of CCO cations to GBs by tuning reducibility of CCO cations and oxygen deficiency, which is expected to guide GB design in CCOs. 
    more » « less
  4. Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics. 
    more » « less
  5. Abstract High‐entropy materials defy historical materials design paradigms by leveraging chemical disorder to kinetically stabilize novel crystalline solid solutions comprised of many end‐members. Formulational diversity results in local crystal structures that are seldom found in conventional materials and can strongly influence macroscopic physical properties. Thermodynamically prescribed chemical flexibility provides a means to tune such properties. Additionally, kinetic metastability results in many possible atomic arrangements, including both solid‐solution configurations and heterogeneous phase assemblies, depending on synthesis conditions. Local disorder induced by metastability, and extensive cation solubilities allowed by thermodynamics combine to give many high‐entropy oxide systems utility as electrochemical, magnetic, thermal, dielectric, and optical materials. Though high‐entropy materials research is maturing rapidly, much remains to be understood and many compositions still await discovery, exploration, and implementation. 
    more » « less