Short range order (SRO) is critical in determining the performance of many important engineering materials. However, accurate characterization of SRO with high spatial resolution – which is needed for the study of individual nanoparticles and at material defects and interfaces – is often experimentally inaccessible. Here, we locally quantify SRO via scanning transmission electron microscopy with extended energy loss fine structure analysis. Specifically, we use novel instrumentation to perform electron energy loss spectroscopy out to 12 keV, accessing energies which are conventionally only possible using a synchrotron. Our data is of sufficient energy resolution and signal-to-noise ratio to perform quantitative extended fine structure analysis, which allows determination of local coordination environments. To showcase this technique, we investigate a multicomponent metallic glass nanolaminate and locally quantify the SRO with <10 nm spatial resolution; this measurement would have been impossible with conventional synchrotron or electron microscopy methods. We discuss the nature of SRO within the metallic glass phase, as well as the wider applicability of our approach for determining processing–SRO–property relationships in complex materials.
more »
« less
Determination of short-range order in TiVNbHf(Al)
The presence of short-range chemical order can be a key factor in determining the mechanical behavior of metals, but directly and unambiguously determining its distribution in complex concentrated alloy systems can be challenging. Here, we directly identify and quantify chemical order in the globally single phase BCC-TiVNbHf(Al) system using aberration corrected scanning transmission electron microscopy (STEM) paired with spatial statistics methods. To overcome the difficulties of short-range order (SRO) quantification with STEM when the components of an alloy exhibit large atomic number differences and near equiatomic ratios, “null hypothesis” tests are used to separate experiment from a random chemical distribution. Experiment is found to deviate from both the case of an ideal random solid solution and a fully ordered structure with statistical significance. We also identify local chemical order in TiVNbHf and confirm and quantify the enhancement of SRO with the addition of Al. These results provide insight into local chemical order in the promising TiVNbHf(Al) refractory alloys while highlighting the utility of spatial statistics in characterizing nanoscale SRO in compositionally complex systems.
more »
« less
- Award ID(s):
- 1922206
- PAR ID:
- 10594609
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 122
- Issue:
- 18
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)Short-range order (SRO) has a crucial impact on the mechanical strength of metallic alloys. Recent atomistic investigations defined an average SRO and attempted to correlate it with the yield strength. We propose that the local change in SRO upon slip advance must dictate the strengthening, and we elaborate the methodology to establish the “SRO change” on a slip plane considering the Wigner-Seitz cell. The model captures the variation of lattice resistance (Critical Resolved Shear Stress; CRSS) in the crystal as the SRO changes depending on the probability of neighboring atoms. The methodology was applied to Ni-V binary alloys for a wide range of compositions and stacking fault widths. The complex variation of CRSS with compositional variations shows good agreement with limited experimental results.more » « less
-
Abstract Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 107 K s−1) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs. Surprisingly, irrespective of the processing and thermal treatment history, all samples exhibit similar levels of SRO. Atomistic simulations reveal that during solidification, prevalent local chemical order arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 1011 K s−1. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most FCC MPEAs, insensitive to variations in cooling rates and even annealing treatments typically available in experiments.more » « less
-
Deviations of local structure and chemistry from the average crystalline unit cell are increasingly recognized to have a significant influence on the properties of many technologically important materials. Here, we present the vector pair correlation function (vPCF) as a new real-space crystallographic analysis method, which can be applied to atomic-resolution scanning transmission electron microscopy (STEM) images to quantify and analyze structural order/disorder correlations. Our STEM-based vPCFs have several advantages over radial PCFs and/or 3D pair distribution functions from x-ray total scattering: vPCFs explicitly retain crystallographic orientation information, are spatially resolved, can be applied directly on a sublattice basis, and are suitable for any material that can be imaged with STEM. To show the utility of our approach, we measure partial vPCFs in Ba5SmSn3Nb7O30 (BSSN), a tetragonal tungsten bronze (TTB) structured complex oxide. Many TTBs are known to be classical or relaxor ferroelectrics, and these properties have been correlated with the presence of superlattice ordering. BSSN, specifically, exhibits relaxor behavior and an incommensurate structural modulation. From the vPCF data, we observe that, of the cation sites, only the Ba (A2) sublattice is structurally modulated. We then infer the local modulation vector and reveal a marked anisotropy in its correlation length. Finally, short-range correlated polar displacements on the B2 cation sites are observed. This work introduces the vPCF as a powerful real-space crystallography technique, which enables direct, robust quantification of short-to-long range order on a sublattice-specific basis and is applicable to a wide range of complex material types.more » « less
An official website of the United States government
