skip to main content

This content will become publicly available on October 22, 2023

Title: Bacterioplankton dispersal and biogeochemical function across Alaskan Arctic catchments
Abstract

In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra‐dominated‐by‐lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment‐associated fractions and in higher‐order reaches during snowmelt. FamiliesChthonomonadaceae,Pyrinomonadaceae, andXiphinematobacteraceaewere abundantly different across seasons, whileFlavobacteriaceaeandMicroscillaceaewere abundantly different between free‐floating and sediment‐associated fractions. Physicochemical data suggested there was high iron (Fe+) production (alpine catchment); Fe+production and chloride (Cl) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4+) production (lake catchment). In tundra landscapes, these ‘hot spots’ of Fe+production and Clremoval accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton‐mineral relations stabilized communities in free‐flowing reaches, but bacterioplankton‐nutrient relations stabilized those punctuated by lakes.

Authors:
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Award ID(s):
1916565 1846855 1916567
Publication Date:
NSF-PAR ID:
10404402
Journal Name:
Environmental Microbiology
Volume:
24
Issue:
12
Page Range or eLocation-ID:
p. 5690-5706
ISSN:
1462-2912
Publisher:
Wiley-Blackwell
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is intensifying the Arctic hydrologic cycle, potentially accelerating the release of carbon and nutrients from permafrost landscapes to rivers. However, there are limited riverine flow and solute data of adequate frequency and duration to test how seasonality and catchment landscape characteristics influence production and transport of carbon and nutrients in Arctic river networks. We measured high frequency hydrochemical dynamics at the outlets of three headwater catchments in Arctic Alaska over 3 years. The catchments represent common Arctic landscapes: low‐gradient tundra, low‐gradient and lake‐influenced tundra, and high‐gradient alpine tundra. Using in‐situ spectrophotometers, we measured dissolved organic carbon (DOC) and nitrate (NO3) concentrations at 15‐min intervals through the flow seasons of 2017, 2018, and 2019. These high‐frequency data allowed us to quantify concentration–discharge (C‐Q) responses during individual storm events across the flow season. Differences in C‐Q responses among catchments indicated strong landscape and seasonal controls on lateral DOC and NO3flux. For the two low‐gradient tundra catchments, we observed consistent DOC enrichment (transport‐limitation) and NO3dilution (source‐limitation) during flow events. Conversely, we found consistent NO3enrichment and DOC dilution in the high‐gradient alpine catchment. Our analysis revealed how high flow events may contribute disproportionately to downstream export in these Arctic streams. Because themore »duration of the flow season is expected to lengthen and the intensity of Arctic storms are expected to increase, understanding how discharge and solute concentration are coupled is crucial to understanding carbon and nutrient dynamics in rapidly changing permafrost ecosystems.

    « less
  2. Abstract

    Experimental and ambient warming of Arctic tundra results in emissions of greenhouse gases to the atmosphere, contributing to a positive feedback to climate warming. Estimates of gas emissions from lakes and terrestrial tundra confirm the significance of aquatic fluxes in greenhouse gas budgets, whereas few estimates describe emissions from fluvial networks. We measured dissolved gas concentrations and estimated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from water tracks, vegetated depressions that hydrologically connect hillslope soils to lakes and streams. Concentrations of trace gases generally increased as ground thaw deepened through the growing season, indicating active production of greenhouse gases in thawed soils. Wet antecedent conditions were correlated with a decline in CO2and CH4concentrations. Dissolved N2O in excess of atmospheric equilibrium occurred in drier water tracks, but on average water tracks took up N2O from the atmosphere at low rates. Estimated CO2emission rates for water tracks were among the highest observed for Arctic aquatic ecosystems, whereas CH4emissions were of similar magnitude to streams. Despite occupying less than 1% of total catchment area, surface waters within water tracks were an estimated source of up to 53–85% of total CH4emissions from their catchments and offset the terrestrial Cmore »sink by 5–9% during the growing season. Water tracks are abundant features of tundra landscapes that contain warmer soils and incur deeper thaw than adjacent terrestrial ecosystems and as such might contribute to ongoing and accelerating release of greenhouse gases from permafrost soils to the atmosphere.

    « less
  3. Abstract

    Although most lotic ecosystems experience frequent and sometimes large disturbances, opportunities are uncommon to study primary succession in streams. Exceptions include new stream channels arising from events such as glacial retreat, volcanism, and catastrophic landslides. In 1980, the eruption and massive landslide at Mount St. Helens (WA, U.S.A.) created an entire landscape with five new catchments undergoing primary succession. We asked if riparian and lotic assemblages at early successional stages (36 years after the eruption) showed predictable change along longitudinal gradients within catchments, and whether assemblages were similar among five replicate catchments.

    In July 2016, we collected environmental data and characterised riparian, algal, and benthic macroinvertebrate assemblages at 21 stream reaches distributed within and among five neighbouring catchments. We evaluated patterns of richness, abundance, biomass, multivariate taxonomic community structure, and functional traits both longitudinally and among catchments.

    We found minimal evidence that longitudinal gradients had developed within catchments at 36 years post‐eruption. Increases in diatom and macroinvertebrate richness with downstream distance were the only biological responses with longitudinal trends. Conversely, we documented substantial variation in community structure of riparian plants, soft‐bodied algae, diatoms, and macroinvertebrates at the among‐catchment scale. Among‐catchment differences consistently separated two eastern catchments from three western catchments, and these twomore »groups also differed in stream water chemistry, water temperature, and geomorphology.

    Overall, we documented greater diversity in the young catchments than predicted by ecologists in the years immediately following the eruption, yet functional traits indicate that these catchments are still in relatively early stages of succession. Variation at the among‐catchment scale is likely to be driven in part by hydrological source variation, with the two eastern catchments showing environmental signatures associated with glacial ice‐melt and the three western catchments probably fed primarily by springs from groundwater aquifers. Contemporary flow disturbance regimes also varied among catchments and successional trajectories were probably reset repeatedly in streams experiencing more frequent disturbance.

    Similar to new stream channels formed following glacial retreat, our results support a tolerance model of succession in streams. However, contrasting abiotic templates among Mount St. Helens catchments appear to be driving different successional trajectories of riparian plant, algal, and macroinvertebrate assemblages among neighbouring small catchments sharing the same catastrophic disturbance history.

    « less
  4. Daily stream flow and groundwater dynamics in forested subalpine catchments during spring are to a large extent controlled by hydrological processes that respond to the day-night energy cycle. Diurnal snowmelt and transpiration events combine to induce pressure variations in the soil water storage that are propagated to the stream. In headwater catchments these pressure variations can account for a significant amount of the total pressure in the system and control the magnitude, duration, and timing of stream inflow pulses at daily scales, especially in low flow systems. Changes in the radiative balance at the top of the snowpack can alter the diurnal hydrologic dynamics of the hillslope-stream system with potential ecological and management consequences.

    We present a detailed hourly dataset of atmospheric, hillslope, and streamflow measurements collected during one melt season from a semi-alpine headwater catchment in western Montana, US. We use this dataset to investigate the timing, pattern, and linkages among snowmelt-dominated hydrologic processes and assess the role of the snowpack, transpiration, and hillslopes in mediating daily movements of water from the top of the snowpack to local stream systems. We found that the amount of snowpack cold content accumulated during the night, which must be overcome everymore »morning before snowmelt resumes, delayed water recharge inputs by up to 3 hours early in the melt season. These delays were further exacerbated by multi-day storms (cold fronts), which resulted in significant depletions in the soil and stream storages. We also found that both diurnal snowmelt and transpiration signals are present in the diurnal soil and stream storage fluctuations, although the individual contributions of these processes is difficult to discern. Our analysis showed that the hydrologic response of the snow-hillslope-stream system is highly sensitive to atmospheric drivers at hourly scales, and that variations in atmospheric energy inputs or other stresses are quickly transmitted and alter the intensity, duration and timing of snowmelt pulses and soil water extractions by vegetation, which ultimately drive variations in soil and stream water pressures.« less
  5. Abstract

    Sedimentary plant waxδ2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen‐alkanoic acid andn‐alkane chain‐length distributions andn‐alkanoic acidδ2H andδ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalixspp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐alkanoic acidδ2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalixspp. In contrast, sedimentary long‐chainn‐alkanoic acidδ2H values fall between those for submerged/floating aquatic plants andSalixspp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leafmore »litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes.

    « less