skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arctic concentration–discharge relationships for dissolved organic carbon and nitrate vary with landscape and season
Abstract Climate change is intensifying the Arctic hydrologic cycle, potentially accelerating the release of carbon and nutrients from permafrost landscapes to rivers. However, there are limited riverine flow and solute data of adequate frequency and duration to test how seasonality and catchment landscape characteristics influence production and transport of carbon and nutrients in Arctic river networks. We measured high frequency hydrochemical dynamics at the outlets of three headwater catchments in Arctic Alaska over 3 years. The catchments represent common Arctic landscapes: low‐gradient tundra, low‐gradient and lake‐influenced tundra, and high‐gradient alpine tundra. Using in‐situ spectrophotometers, we measured dissolved organic carbon (DOC) and nitrate (NO3) concentrations at 15‐min intervals through the flow seasons of 2017, 2018, and 2019. These high‐frequency data allowed us to quantify concentration–discharge (C‐Q) responses during individual storm events across the flow season. Differences in C‐Q responses among catchments indicated strong landscape and seasonal controls on lateral DOC and NO3flux. For the two low‐gradient tundra catchments, we observed consistent DOC enrichment (transport‐limitation) and NO3dilution (source‐limitation) during flow events. Conversely, we found consistent NO3enrichment and DOC dilution in the high‐gradient alpine catchment. Our analysis revealed how high flow events may contribute disproportionately to downstream export in these Arctic streams. Because the duration of the flow season is expected to lengthen and the intensity of Arctic storms are expected to increase, understanding how discharge and solute concentration are coupled is crucial to understanding carbon and nutrient dynamics in rapidly changing permafrost ecosystems.  more » « less
Award ID(s):
1637459 1846855 1916567 1916576 1916565 1906381
PAR ID:
10448334
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
S1
ISSN:
0024-3590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Riverine fluxes of carbon and inorganic nutrients are increasing in virtually all large permafrost-affected rivers, indicating major shifts in Arctic landscapes. However, it is currently difficult to identify what is causing these changes in nutrient processing and flux because most long-term records of Arctic river chemistry are from small, headwater catchments draining <200 km2or from large rivers draining >100,000 km2. The interactions of nutrient sources and sinks across these scales are what ultimately control solute flux to the Arctic Ocean. In this context, we performed spatially-distributed sampling of 120 subcatchments nested within three Arctic watersheds spanning alpine, tundra, and glacial-lake landscapes in Alaska. We found that the dominant spatial scales controlling organic carbon and major nutrient concentrations was 3–30 km2, indicating a continuum of diffuse and discrete sourcing and processing dynamics. These patterns were consistent seasonally, suggesting that relatively fine-scale landscape patches drive solute generation in this region of the Arctic. These network-scale empirical frameworks could guide and benchmark future Earth system models seeking to represent lateral and longitudinal solute transport in rapidly changing Arctic landscapes. 
    more » « less
  2. Abstract In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra‐dominated‐by‐lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment‐associated fractions and in higher‐order reaches during snowmelt. FamiliesChthonomonadaceae,Pyrinomonadaceae, andXiphinematobacteraceaewere abundantly different across seasons, whileFlavobacteriaceaeandMicroscillaceaewere abundantly different between free‐floating and sediment‐associated fractions. Physicochemical data suggested there was high iron (Fe+) production (alpine catchment); Fe+production and chloride (Cl) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4+) production (lake catchment). In tundra landscapes, these ‘hot spots’ of Fe+production and Clremoval accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton‐mineral relations stabilized communities in free‐flowing reaches, but bacterioplankton‐nutrient relations stabilized those punctuated by lakes. 
    more » « less
  3. Abstract Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC) previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate‐driven increases in fire and thermokarst may play a key role in OC mobilization by thawing permafrost and promoting transport of OC. Yet, the extent of OC mobilization and mechanisms controlling terrestrial‐aquatic transfer are unclear. We demonstrate that hydrologic transport of soil dissolved OC (DOC) from the active layer and thawing permafrost to headwater streams is extremely heterogeneous and regulated by the interactions of soils, seasonal thaw, fire, and thermokarst. Repeated sampling of streams in eight headwater catchments of interior Alaska showed that the mean age of DOC for each stream ranges widely from modern to ∼2,000 years B.P. Together, an endmember mixing model and nonlinear, generalized additive models demonstrated that Δ14C‐DOC signature (and mean age) increased from spring to fall, and was proportional to hydrologic contributions from a solute‐rich water source, related to presumed deeper flow paths found predominantly in silty catchments. This relationship was correlated with and mediated by catchment properties. Mean DOC ages were older in catchments with >50% burned area, indicating that fire is also an important explanatory variable. These observations underscore the high heterogeneity in aged C export and difficulty of extrapolating estimates of permafrost‐derived DOC export from watersheds to larger scales. Our results provide the foundation for developing a conceptual model of permafrost DOC export necessary for advancing understanding and prediction of land‐water C exchange in changing boreal landscapes. 
    more » « less
  4. Abstract Climate change is rapidly altering hydrological processes and consequently the structure and functioning of Arctic ecosystems. Predicting how these alterations will shape biogeochemical responses in rivers remains a major challenge. We measured [C]arbon and [N]itrogen concentrations continuously from two Arctic watersheds capturing a wide range of flow conditions to assess understudied event‐scale C and N concentration‐discharge (C‐Q) behavior and post‐event recovery of stoichiometric conditions. The watersheds represent low‐gradient, tundra landscapes typical of the eastern Brooks Range on the North Slope of Alaska and are part of the Arctic Long‐Term Ecological Research sites: the Kuparuk River and Oksrukuyik Creek. In both watersheds, we deployed high‐frequency optical sensors to measure dissolved organic carbon (DOC), nitrate (), and total dissolved nitrogen (TDN) for five consecutive thaw seasons (2017–2021). Our analyses revealed a lag in DOC: stoichiometric recovery after a hydrologic perturbation: while DOC was consistently elevated after high flows, diluted during rainfall events and consequently, recovery in post‐event concentration was delayed. Conversely, the co‐enrichment of TDN at high flows, even in watersheds with relatively high N‐demand, represents a potential “leak” of hydrologically available organic N to downstream ecosystems. Our use of high‐frequency, long‐term optical sensors provides an improved method to estimate carbon and nutrient budgets and stoichiometric recovery behavior across event and seasonal timescales, enabling new insights and conceptualizations of a changing Arctic, such as assessing ecosystem disturbance and recovery across multiple timescales. 
    more » « less
  5. Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge (CQ) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration–discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where SOM is dominantly in lowlands (e.g., Shale Hills), we infer that non-chemostatic elements associated with organic matter are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), these non-chemostatic elements are released later during rainfall events. The distribution of SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments. 
    more » « less