skip to main content

This content will become publicly available on December 1, 2023

Title: Theory, phenomenology, and experimental avenues for dark showers: a Snowmass 2021 report
Abstract In this work, we consider the case of a strongly coupled dark/hidden sector, which extends the Standard Model (SM) by adding an additional non-Abelian gauge group. These extensions generally contain matter fields, much like the SM quarks, and gauge fields similar to the SM gluons. We focus on the exploration of such sectors where the dark particles are produced at the LHC through a portal and undergo rapid hadronization within the dark sector before decaying back, at least in part and potentially with sizeable lifetimes, to SM particles, giving a range of possibly spectacular signatures such as emerging or semi-visible jets. Other, non-QCD-like scenarios leading to soft unclustered energy patterns or glueballs are also discussed. After a review of the theory, existing benchmarks and constraints, this work addresses how to build consistent benchmarks from the underlying physical parameters and present new developments for the pythia Hidden Valley module, along with jet substructure studies. Finally, a series of improved search strategies is presented in order to pave the way for a better exploration of the dark showers at the LHC.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The European Physical Journal C
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies. 
    more » « less
  2. A bstract Hidden sectors are ubiquitous in supergravity theories, in strings and in branes. Well motivated models such as the Stueckelberg hidden sector model could provide a candidate for dark matter. In such models, the hidden sector communicates with the visible sector via the exchange of a dark photon (dark Z ′) while dark matter is constituted of Dirac fermions in the hidden sector. Using data from collider searches and precision measurements of SM processes as well as the most recent limits from dark matter direct and indirect detection experiments, we perform a comprehensive scan over a wide range of the Z ′ mass and set exclusion bounds on the parameter space from sub-GeV to several TeV. We then discuss the discovery potential of an $$ \mathcal{O} $$ O (TeV) scale Z ′ at HL-LHC and the ability of future forward detectors to probe very weakly interacting sub-GeV Z ′ bosons. Our analysis shows that the parameter space in which a Z ′ can decay to hidden sector dark matter is severely constrained whereas limits become much weaker for a Z ′ with no dark decays. The analysis also favors a self-thermalized dark sector which is necessary to satisfy the dark matter relic density. 
    more » « less
  3. A bstract The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb −1 , collected with the CMS detector at the CERN LHC, at $$ \sqrt{s} $$ s = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z′ mediator produced as a resonance in proton-proton collisions. The mediator decay results in two “semivisible” jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z′ boson has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5–4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time. 
    more » « less
  4. null (Ed.)
    A bstract We analyze signals at the Large Hadron Collider (LHC) from production and decay of Kaluza-Klein (KK) gravitons in the context of “extended” warped extra-dimensional models, where the standard model (SM) Higgs and fermion fields are restricted to be in-between the usual ultraviolet/Planck brane and a ∼ O (10) TeV (new, “intermediate”) brane, whereas the SM gauge fields (and gravity) propagate further down to the ∼ O (TeV) infrared brane. Such a framework suppresses flavor violation stemming from KK particle effects, while keeping the KK gauge bosons and gravitons accessible to the LHC. We find that the signals from KK graviton are significantly different than in the standard warped model. This is because the usually dominant decay modes of KK gravitons into top quark, Higgs and longitudinal W/Z particles are suppressed by the above spatial separation between these two sets of particles, thus other decay channels are allowed to shine themselves. In particular, we focus on two novel decay channels of the KK graviton. The first one is the decay into a pair of radions, each of which decays (dominantly) into a pair of SM gluons, resulting in a resonant 4-jet final state consisting of two pairs of dijet resonance. On the other hand, if the radion is heavier and/or KK gluon is lighter, then the KK graviton mostly decays into a KK gluon and a SM gluon. The resulting KK gluon has a significant decay branching fraction into radion and SM gluon, thereby generating (again) a 4-jet signature, but with a different underlying event topology, i.e., featuring now three different resonances. We demonstrate that the High-Luminosity LHC (HL-LHC) has sensitivity to KK graviton of (up to) ∼ 4 TeV in both channels, in the specific model with only gluon field (and gravity) propagating in the extended bulk, whereas it is unlikely to have sensitivity in the standard dijet resonance search channel from KK graviton decay into two gluons. 
    more » « less
  5. Abstract

    Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity ‘dark showers’, highlighting opportunities for expanding the LHC reach for these signals.

    more » « less