skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal and Morphological Controls on Nitrate Retention in Arctic Deltas
Abstract Estimates of nitrate loading to the Arctic Ocean are limited by the lack of field observations within deltas partly due to logistical constraints. To overcome this limitation, we use a remote sensing framework to estimate retention of nitrate in Arctic deltas. We achieve this by coupling hydrological and biogeochemical process models at the network scale for five major Arctic deltas. Binary masks of delta channels were used to simulate flow direction and magnitude through networks. Models were parameterized using historical and seasonal observations. Simulated nitrate retention ranged from 2.9% to 15% of the incoming load. Retention rates were largest during winter but smallest during spring conditions when increased discharges export large nitrate masses to the coast. Under future climate scenarios, retention rates fall by ∼1%–10%. Arctic deltas have an important effect on the magnitude of nitrate entering Arctic seas and the inclusion of processing in deltas can improve flux estimates.  more » « less
Award ID(s):
1952914
PAR ID:
10404602
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The abundant lakes dotting arctic deltas are hotspots of methane emissions and biogeochemical activity, but seasonal variability in lake extents introduces uncertainty in estimates of lacustrine carbon emissions, typically performed at annual or longer time scales. To characterize variability in lake extents, we analyzed summertime lake area loss (i.e., shrinkage) on two deltas over the past 20 years, using Landsat‐derived water masks. We find that monthly shrinkage rates have a pronounced structured variability around the channel network with the shrinkage rate systematically decreasing farther away from the channels. This pattern of shrinkage is predominantly attributed to a deeper active layer enhancing near‐surface connectivity and storage and greater vegetation density closer to the channels leading to increased evapotranspiration rates. This shrinkage signal, easily extracted from remote sensing observations, may offer the means to constrain estimates of lacustrine methane emissions and to develop process‐based estimates of depth to permafrost on arctic deltas. 
    more » « less
  2. Abstract Seasonal sea ice impacts Arctic delta morphology by limiting wave and river influences and altering river‐to‐ocean sediment pathways. However, the long‐term effects of sea ice on delta morphology remain poorly known. To address this gap, 1D morphologic and hydrodynamic simulations were set up in Delft3D to study the 1500‐year development of Arctic deltas during the most energetic Arctic seasons: spring break‐up/freshet, summer open‐water, and autumn freeze‐up. The model focused on the deltaic clinoform (i.e., the vertical cross‐sectional view of a delta) and used a floating barge structure to mimic the effects of sea ice on nearshore waters. From the simulations we find that ice‐affected deltas form a compound clinoform morphology, that is, a coupled subaerial and subaqueous delta separated by a subaqueous platform that resembles the shallow platform observed offshore of Arctic deltas. Nearshore sea ice affects river dynamics and promotes sediment bypassing during sea ice break‐up, forming an offshore depocenter and building a subaqueous platform. A second depocenter forms closer to shore during the open‐water season at the subaerial foreset that aids in outbuilding the subaerial delta and assists in developing the compound clinoform morphology. Simulations of increased wave activity and reduced sea‐ice, likely futures under a warming Arctic climate, show that deltas may lose their shallow platform on centennial timescales by (a) sediment infill and/or (b) wave erosion. This study highlights the importance of sea ice on Arctic delta morphology and the potential morphologic transitions these high‐latitude deltas may experience as the Arctic continues to warm. 
    more » « less
  3. Future sea-level rise poses an existential threat for many river deltas, yet quantifying the effect of sea-level changes on these coastal landforms remains a challenge. Sea-level changes have been slow compared to other coastal processes during the instrumental record, such that our knowledge comes primarily from models, experiments, and the geologic record. Here we review the current state of science on river delta response to sea-level change, including models and observations from the Holocene until 2300 CE. We report on improvements in the detection and modeling of past and future regional sea-level change, including a better understanding of the underlying processes and sources of uncertainty. We also see significant improvements in morphodynamic delta models. Still, substantial uncertainties remain, notably on present and future subsidence rates in and near deltas. Observations of delta submergence and land loss due to modern sea-level rise also remain elusive, posing major challenges to model validation. ▪ There are large differences in the initiation time and subsequent delta progradation during the Holocene, likely from different sea-level and sediment supply histories. ▪ Modern deltas are larger and will face faster sea-level rise than during their Holocene growth, making them susceptible to forced transgression. ▪ Regional sea-level projections have been much improved in the past decade and now also isolate dominant sources of uncertainty, such as the Antarctic ice sheet. ▪ Vertical land motion in deltas can be the dominant source of relative sea-level change and the dominant source of uncertainty; limited observations complicate projections. ▪ River deltas globally might lose 5% (∼35,000 km 2 ) of their surface area by 2100 and 50% by 2300 due to relative sea-level rise under a high-emission scenario. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 51 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  4. Abstract Groundwater discharge transports dissolved constituents to the ocean, affecting coastal carbon budgets and water quality. However, the magnitude and mechanisms of groundwater exchange along rapidly transitioning Arctic coastlines are largely unknown due to limited observations. Here, using first-of-its-kind coastal Arctic groundwater timeseries data, we evaluate the magnitude and drivers of groundwater discharge to Alaska’s Beaufort Sea coast. Darcy flux calculations reveal temporally variable groundwater fluxes, ranging from −6.5 cm d−1(recharge) to 14.1 cm d−1(discharge), with fluctuations in groundwater discharge or aquifer recharge over diurnal and multiday timescales during the open-water season. The average flux during the monitoring period of 4.9 cm d−1is in line with previous estimates, but the maximum discharge exceeds previous estimates by over an order-of-magnitude. While the diurnal fluctuations are small due to the microtidal conditions, multiday variability is large and drives sustained periods of aquifer recharge and groundwater discharge. Results show that wind-driven lagoon water level changes are the dominant mechanism of fluctuations in land–sea hydraulic head gradients and, in turn, groundwater discharge. Given the microtidal conditions, low topographic relief, and limited rainfall along the Beaufort Sea coast, we identify wind as an important forcing mechanism of coastal groundwater discharge and aquifer recharge with implications for nearshore biogeochemistry. This study provides insights into groundwater flux dynamics along this coastline over time and highlights an oft overlooked discharge and circulation mechanism with implications towards refining solute export estimates to coastal Arctic waters. 
    more » « less
  5. Abstract The drastic decline in sediment discharge experienced by large rivers in recent years might trigger erosion thus increasing the vulnerability of their extensive deltas. However, scarce information is available on the erosion patterns in mega‐deltas and associated physical drivers. Here a series of bathymetries in the South Passage, Changjiang Delta, were analyzed to identify morphodynamic variations during high riverine flow and tropical cyclones (TCs). Results indicate that high river flow during flood season triggers large‐scale net erosion along the inner estuary, generating elongated erosion‐deposition patches. Erosion magnitude gradually weakens moving seaward with few localized bottom variations in the offshore area. TCs transport sediment landward and are accompanied by an overall weak erosion, with a less organized spatial pattern of erosion‐deposition. TCs can therefore significantly alleviate erosion, reducing the sediment loss induced by riverine flows by over 50%. These results highlight the role of TCs on the sediment dynamics of mega‐deltas. 
    more » « less