Abstract Despite widespread use of radio-echo sounding (RES) in glaciology and broad distribution of processed radar products, the glaciological community has no standard software for processing impulse RES data. Dependable, fast and collection-system/platform-independent processing flows could facilitate comparison between datasets and allow full utilization of large impulse RES data archives and new data. Here, we present ImpDAR, an open-source, cross-platform, impulse radar processor and interpreter, written primarily in Python. The utility of this software lies in its collection of established tools into a single, open-source framework. ImpDAR aims to provide a versatile standard that is accessible to radar-processing novices and useful to specialists. It can read data from common commercial ground-penetrating radars (GPRs) and some custom-built RES systems. It performs all the standard processing steps, including bandpass and horizontal filtering, time correction for antenna spacing, geolocation and migration. After processing data, ImpDAR's interpreter includes several plotting functions, digitization of reflecting horizons, calculation of reflector strength and export of interpreted layers. We demonstrate these capabilities on two datasets: deep (~3000 m depth) data collected with a custom (3 MHz) system in northeast Greenland and shallow (<100 m depth, 500 MHz) data collected with a commercial GPR on South Cascade Glacier in Washington.
more »
« less
This content will become publicly available on January 1, 2024
Paths forward in radioglaciology
Abstract Ice-penetrating radar sounding is a powerful geophysical tool for studying terrestrial and planetary ice with a rich glaciological heritage reaching back over half a century. Recent years have also seen rapid growth in both the radioglaciological community itself and in the scope and sophistication of its analysis of ice-penetrating radar data. This has been spurred by a combination of growing datasets and improvements in computational resources as well as advances in radar sounding instrumentation and platforms. Together, these developments are transforming the field and highlight exciting paths forward for future innovation and investigation.
more »
« less
- Award ID(s):
- 1745137
- NSF-PAR ID:
- 10404713
- Date Published:
- Journal Name:
- Annals of Glaciology
- ISSN:
- 0260-3055
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Radar sounding is a powerful tool for constraining subglacial conditions, which influence the mass balance of polar ice sheets and their contributions to global sea-level rise. A satellite-based radar sounder, such as those successfully demonstrated at Mars, would offer unprecedented spatial and temporal coverage of the subsurface. However, airborne sounding studies suggest that poorly constrained radar scattering in polar firn may produce performance-limiting clutter for terrestrial orbital sounders. We develop glaciologically constrained electromagnetic models of radar interactions in firn, test them against in situ data and multifrequency airborne radar observations, and apply the only model we find to be consistent with observation to assess the implications of firn clutter for orbital sounder system design. Our results show that in the very high-frequency (VHF) and ultrahigh-frequency (UHF) bands, radar interactions in the firn are dominated by quasi-specular reflections at the interfaces between layers of different densities and that off-nadir backscatter is likely the result of small-scale roughness in the subsurface density profiles. As a result, high frequency (HF) or low VHF center frequencies offer a significant advantage in near-surface clutter suppression compared to the UHF band. However, the noise power is the dominant constraint in all bands, so the near-surface clutter primarily constrains the extent to which the transmit power, pulselength, or antenna gain can be engineered to improve the signal-to-noise ratio. Our analysis suggests that the deep interior of terrestrial ice sheets is a difficult target for orbital sounding, which may require optimizations in azimuth processing and cross-track clutter suppression which complement existing requirements for sounding at the margins.more » « less
-
Airborne radar sounding can measure conditions within and beneath polar ice sheets. In Antarctica, most digital radar-sounding data have been collected in the last 2 decades, limiting our ability to understand processes that govern longer-term ice-sheet behavior. Here, we demonstrate how analog radar data collected over 40 y ago in Antarctica can be combined with modern records to quantify multidecadal changes. Specifically, we digitize over 400,000 line kilometers of exploratory Antarctic radar data originally recorded on 35-mm optical film between 1971 and 1979. We leverage the increased geometric and radiometric resolution of our digitization process to show how these data can be used to identify and investigate hydrologic, geologic, and topographic features beneath and within the ice sheet. To highlight their scientific potential, we compare the digitized data with contemporary radar measurements to reveal that the remnant eastern ice shelf of Thwaites Glacier in West Antarctica had thinned between 10 and 33% between 1978 and 2009. We also release the collection of scanned radargrams in their entirety in a persistent public archive along with updated geolocation data for a subset of the data that reduces the mean positioning error from 5 to 2.5 km. Together, these data represent a unique and renewed extensive, multidecadal historical baseline, critical for observing and modeling ice-sheet change on societally relevant timescales.more » « less
-
Radar sounding of ice from orbit has been successful on Mars [1], is planned for the Galilean satellites [2], and is attractive for earth [3] as a complement to current airborne instruments [4], but of major concern is the poorly constrained but potentially seriously limiting contribution of firn clutter [5]. To inform this issue, we analytically model electromagnetic scattering in the upper 100 meters of the ice column for continental ice sheets and evaluate the effects of variable platform altitude, frequency, and range resolution on clutter power. Our results show that volume scattering from air inclusions is insignificant and unlikely to constrain deep ice sounding. Rather, firn scattering is dominated by quasispecular reflections from layers of varying density which, at orbital altitudes, may contribute significantly to clutter due to the small angles of illumination. This layer clutter can be mitigated by a careful choice of range resolution for center frequencies below 200 MHz, but is practically unavoidable above 250 MHz. Firn layer clutter is likely to significantly constrain UHF orbital ice sounding, making a VHF instrument the more practical choice.more » « less
-
null (Ed.)Abstract Subglacial topography is an important feature in numerous ice-sheet analyses and can drive the routing of water at the bed. Bed topography is primarily measured with ice-penetrating radar. Significant gaps, however, remain in data coverage that require interpolation. Topographic interpolations are typically made with kriging, as well as with mass conservation, where ice flow dynamics are used to constrain bed geometry. However, these techniques generate bed topography that is unrealistically smooth at small scales, which biases subglacial water flowpath models and makes it difficult to rigorously quantify uncertainty in subglacial drainage patterns. To address this challenge, we adapt a geostatistical simulation method with probabilistic modeling to stochastically simulate bed topography such that the interpolated topography retains the spatial statistics of the ice-penetrating radar data. We use this method to simulate subglacial topography using mass conservation topography as a secondary constraint. We apply a water routing model to each of these realizations. Our results show that many of the flowpaths significantly change with each topographic realization, demonstrating that geostatistical simulation can be useful for assessing confidence in subglacial flowpaths.more » « less