skip to main content


Title: How Frequently Does Rapid Intensification Occur after Rapid Contraction of the Radius of Maximum Wind in Tropical Cyclones over the North Atlantic and Eastern North Pacific?
Abstract The phenomenon that rapid contraction (RC) of the radius of maximum wind (RMW) could precede rapid intensification (RI) in tropical cyclones (TCs) has been found in several previous studies, but it is still unclear how frequently and to what extent RC precedes RI in rapidly intensifying and contracting TCs in observations. In this study, the statistical relationship between RMW RC and TC RI is examined based on the extended best track dataset for the North Atlantic and eastern North Pacific during 1999–2019. Results show that for more than ∼65% of available TCs, the time of the peak contraction rate precedes the time of the peak intensification rate, on average, by ∼10–15 h. With the quantitatively defined RC and RI, results show that ∼50% TCs with RC experience RI, and TCs with larger intensity and smaller RMW and embedded in more favorable environmental conditions tend to experience RI more readily following an RC. Among those TCs with RC and RI, more than ∼65% involve the onset of RC preceding the onset of RI, on average, by ∼15–25 h. The preceding time tends to be longer with lower TC intensity and larger RMW and shows weak correlations with environmental conditions. The qualitative results are insensitive to the time interval for the calculation of intensification/contraction rates and the definition of RI. The results from this study can improve our understanding of TC structure and intensity changes.  more » « less
Award ID(s):
1834300
NSF-PAR ID:
10404746
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Weather Review
Volume:
150
Issue:
7
ISSN:
0027-0644
Page Range / eLocation ID:
1747 to 1760
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The radius of maximum wind (RMW) has been found to contract rapidly well preceding rapid intensification in tropical cyclones (TCs) in recent literature but the understanding of the involved dynamics is incomplete. In this study, this phenomenon is revisited based on ensemble axisymmetric numerical simulations. Consistent with previous studies, because the absolute angular momentum (AAM) is not conserved following the RMW, the phenomenon can not be understood based on the AAM-based dynamics. Both budgets of tangential wind and the rate of change in the RMW are shown to provide dynamical insights into the simulated relationship between the rapid intensification and rapid RMW contraction. During the rapid RMW contraction stage, due to the weak TC intensity and large RMW, the moderate negative radial gradient of radial vorticity flux and small curvature of the radial distribution of tangential wind near the RMW favor rapid RMW contraction but weak diabatic heating far inside the RMW leads to weak low-level inflow and small radial absolute vorticity flux near the RMW and thus a relatively small intensification rate. As RMW contraction continues and TC intensity increases, diabatic heating inside the RMW and radial inflow near the RMW increase, leading to a substantial increase in radial absolute vorticity flux near the RMW and thus the rapid TC intensification. However, the RMW contraction rate decreases rapidly due to the rapid increase in the curvature of the radial distribution of tangential wind near the RMW as the TC intensifies rapidly and RMW decreases. 
    more » « less
  2. Abstract

    This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments.

    Significance Statement

    Accurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment.

     
    more » « less
  3. Abstract

    This paper investigates the relationship between long‐term trends (1980–2017) in intensity and wind evolution for tropical cyclones (TCs) within the western tropical Atlantic (WTA) and central/eastern tropical Atlantic (CETA) subbasins. Long‐term TC trends in intensity, intensification time, and wind variability for the CETA were generally more significant than, and in some cases opposite to, those for the WTA. Both the TC intensity levels, as measured by the power dissipation index normalized by storm hours and proportion of rapid intensification intervals (defined as a 12‐hr wind speed increase of 20 kt or more), exhibit no long‐term trends in either subbasin. A TC wind variability index (WVI) calculated over 72‐hr intervals of the TC lifecycle decreases for the WTA over the decades, while the CETA has the 72‐hr intervals with the greatest wind speed fluctuations. The average period of intensification before the peak in TC intensity increases ~0.97 hr/year for the CETA. TC maximum intensity exhibits no trend, suggesting that TCs in the tropical North Atlantic have a trend favoring a longer intensification period to reach their lifetime maximum intensity. A correlation analysis suggests that warmer sea surface temperatures and greater moisture favor longer intensification and greater WVI. In contrast, greater 850‐ to 200‐hPa vertical wind shear is associated with shorter intensification periods and less WVI.

     
    more » « less
  4. This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1).

     
    more » « less
  5. Abstract

    This study aimed to understand the microphysical processes that affect rapid intensity changes of tropical cyclones (TCs) over the Bay of Bengal (BoB). Four representative TCs were simulated using the Weather Research and Forecasting model with storm tracking nested configuration (at 9‐km and 3‐km resolution). Results indicate that the inner‐core heating strongly correlated (r > 0.85) with the precipitated compared to non‐precipitated hydrometeors. Furthermore, the vertical distribution of hydrometeors and heating is dependent on inner‐core updrafts and relative humidity. A novel composite analysis of microphysical processes indicates that the warmer (2 K) inner core is close to saturation (>90%) with excess water vapor (>2–3 × 10−3 kg·kg−1), which enhances the latent heat release (LHR) through condensation below the freezing level during the rapid intensification (RI) onset. In addition, during RI, strong updrafts transport the water vapor (>2 × 10−3 kg·kg−1) and cloud liquid water (2.5 × 10−4 kg·kg−1) to above freezing level, and enhance the LHR because of deposition and freezing respectively. The increased precipitating particles in the saturated inner core also enhance LHR. The symmetric convection structured by the atmospheric moisture causes the formation of prolonged RI episodes, as seen in TCPhailin. During rapid weakening (RW), asymmetric and relatively fewer hydrometeors are evident, along with the presence of weak updrafts and strong shear. The dry‐air intrusion into the inner core also causes the cooling processes (evaporation and sublimation). The enhancement or reduction of moist static energy and potential vorticity is associated with increased or reduced LHR in the TC rapid intensity changes.

     
    more » « less