skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interconnected Plasmonic Nanogap Antennas for Sub-Bandgap Photodetection via Hot Carrier Injection
Modern integrated circuits have active components on the order of nanometers. However, optical devices are often limited by diffraction effects with dimensions measured in wavelengths. Nanoscale photodetectors capable of converting light into electrical signals are necessary for the miniaturization of optoelectronic applications. Strong coupling of light and free electrons in plasmonic nanostructures overcomes these limitations by confining light into sub-wavelength volumes with intense local electric fields. Localized electric fields are intensified at nanorod ends and in nanogap regions between nanostructures. Hot carriers generated within these high-field regions from nonradiative decay of surface plasmons can be injected into the conduction band of adjacent semiconductors, enabling sub-bandgap photodetection. The optical properties of these plasmonic photodetectors can be tuned by modifying antenna materials and geometric parameters like size, thickness, and shape. Electrical interconnects provide connectivity to convert light into electrical signals. In this work, interconnected nanogap antennas fabricated with 35 nm gaps are encapsulated with ALD-deposited [Formula: see text], enabling photodetection via Schottky barrier junctions. Photodetectors with high responsivity (12[Formula: see text][Formula: see text]A/mW) are presented for wavelengths below the bandgap of [Formula: see text] (3.2[Formula: see text]eV). These plasmonic nanogap antennas are sub-wavelength, tunable photodetectors with sub-bandgap responsivity for a broad spectral range.  more » « less
Award ID(s):
2150158 2232057
PAR ID:
10608905
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific Publishing Company
Date Published:
Journal Name:
International Journal of High Speed Electronics and Systems
Volume:
33
Issue:
02n03
ISSN:
0129-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices due to their strong light–matter interactions. Plasmonic dimers with nanogaps between adjacent nanostructures are especially good at enhancing local electromagnetic (EM) fields at resonance for improved performance. In this study, we use optical extinction measurements and high-resolution electron microscopy imaging to investigate the thermal stability of electrically interconnected plasmonic dimers and their optical and morphological properties. Experimental measurements and finite difference time domain (FDTD) simulations are combined to characterize temperature effects on the plasmonic properties of large arrays of Au nanostructures on glass substrates. Experiments show continuous blue shifts of extinction peaks for heating up to 210°C. Microscopy measurements reveal these peak shifts are due to morphological changes that shrink nanorods and increase nanogap distances. Simulations of the nanostructures before and after heating find good agreement with experiments. Results show that plasmonic properties are maintained after thermal processing, but peak shifts need to be considered for device design. 
    more » « less
  2. Many emerging, high-speed, reconfigurable optical systems are limited by routing complexity when producing dynamic, two-dimensional (2D) electric fields. We propose a gradient-based inverse-designed, static phase-mask doublet to generate arbitrary 2D intensity wavefronts using a one-dimensional (1D) intensity spatial light modulator (SLM). We numerically simulate the capability of mapping each point in a 49 element 1D array to a distinct 7 ×<#comment/> 7 2D spatial distribution. Our proposed method will significantly relax the routing complexity of electrical control signals, possibly enabling high-speed, sub-wavelength 2D SLMs leveraging new materials and pixel architectures. 
    more » « less
  3. Internal photoemission or hot-electron injection (HEJ) occurring at the metal-semiconductor (MS) Schottky interface has shown great promise in sub-bandgap photodetection and photovoltaics. In this paper, we put forward a plasmonic metagrating-interlayer-semiconductor (PMIS) structure that can significantly enhance the photon-to-electron conversion efficiency of HEJ-based optoelectronic devices. Thanks to the effect of image force-induced barrier lowering, a metal-interlayer-semiconductor (MIS) heterojunction with an ultrathin 2D material interlayer can considerably facilitate the hot electron transport across the Schottky barrier, resulting in a high internal quantum efficiency (IQE). Meanwhile, nanopatterning the MIS heterojunction into the plasmonic metagrating enables high optical absorption such that the device’s external quantum efficiency (EQE) can be nearly equal to its IQE. In addition, this device can be wavelength- and polarization-selective by tailoring the geometry and dimensions of plasmonic metagrating, thereby paving a promising path toward bandgap-independent photodetection, energy harvesting, and photocatalysis. 
    more » « less
  4. In integrated photonics, specific wavelengths such as 1,550 nm are preferred due to low-loss transmission and the availability of optical gain in this spectral region. For chip-based photodetectors, two-dimensional materials bear scientifically and technologically relevant properties such as electrostatic tunability and strong light–matter interactions. However, no efficient photodetector in the telecommunication C-band has been realized with two-dimensional transition metal dichalcogenide materials due to their large optical bandgaps. Here we demonstrate a MoTe2-based photodetector featuring a strong photoresponse (responsivity 0.5 A W–1) operating at 1,550 nm in silicon photonics enabled by strain engineering the two-dimensional material. Non-planarized waveguide structures show a bandgap modulation of 0.2 eV, resulting in a large photoresponse in an otherwise photoinactive medium when unstrained. Unlike graphene-based photodetectors that rely on a gapless band structure, this photodetector shows an approximately 100-fold reduction in dark current, enabling an efficient noise-equivalent power of 90 pW Hz–0.5. Such a strain-engineered integrated photodetector provides new opportunities for integrated optoelectronic systems. 
    more » « less
  5. Abstract The design and development of solar‐blind photodetectors utilizing ultrawide bandgap semiconductors have garnered significant attention due to their extensive utility in specialty commercial sectors. Solar‐blind photodetectors that display excellent photosensitivity, fast response time and are produced using cost‐effective fabrication steps will fulfill the performance demands in relevant applications. Herein, highly textured Sn‐doped Ga2O3thin film metal‐semiconductor‐metal type deep‐UV photodetectors using a commercially scalable magnetron sputtering method are reported. Commercially achievable growth and fabrication steps are intentionally chosen to demonstrate an economically viable photodetection workflow without compromising the device's performance. In‐depth structural, morphological, chemical, and optical characterization are reported to optimize the configuration for further device fabrication and testing. Under transient triggering circumstances, a fast response time of ≈500 ms is reported, accompanied by a responsivity of ≈60.5 A W−1. The detectivity, external quantum efficiency, and photo‐to‐dark current ratio values are reported as 1.6 × 1013Jones, 2.8 × 104%, and 17.4, respectively. The overall device performance and cost‐effective fabrication process for solar‐blind UV photodetection using Sn‐doped Ga2O3is promising. The approach holds promise for significant implications toward the development of electronics capable of functioning in extreme environments and exhibits substantial potential for enhancing low‐cost UV photodetector technology. 
    more » « less