skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian optimization with active learning of design constraints using an entropy-based approach
Abstract The design of alloys for use in gas turbine engine blades is a complex task that involves balancing multiple objectives and constraints. Candidate alloys must be ductile at room temperature and retain their yield strength at high temperatures, as well as possess low density, high thermal conductivity, narrow solidification range, high solidus temperature, and a small linear thermal expansion coefficient. Traditional Integrated Computational Materials Engineering (ICME) methods are not sufficient for exploring combinatorially-vast alloy design spaces, optimizing for multiple objectives, nor ensuring that multiple constraints are met. In this work, we propose an approach for solving a constrained multi-objective materials design problem over a large composition space, specifically focusing on the Mo-Nb-Ti-V-W system as a representative Multi-Principal Element Alloy (MPEA) for potential use in next-generation gas turbine blades. Our approach is able to learn and adapt to unknown constraints in the design space, making decisions about the best course of action at each stage of the process. As a result, we identify 21 Pareto-optimal alloys that satisfy all constraints. Our proposed framework is significantly more efficient and faster than a brute force approach.  more » « less
Award ID(s):
2119103 2001333 1835690
PAR ID:
10404996
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
9
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ferritic-martensitic steels, such as T91, are candidate materials for high-temperature applications, including superheaters, heat exchangers, and advanced nuclear reactors. Considering these alloys’ wide applications, an atomistic understanding of the underlying mechanisms responsible for their excellent mechano-chemical properties is crucial. Here, we developed a modified embedded-atom method (MEAM) potential for the Fe-Cr-Si-Mo quaternary alloy system—i.e., four major elements of T91—using a multi-objective optimization approach to fit thermomechanical properties reported using density functional theory (DFT) calculations and experimental measurements. Elastic constants calculated using the proposed potential for binary interactions agreed well with ab initio calculations. Furthermore, the computed thermal expansion and self-diffusion coefficients employing this potential are in good agreement with other studies. This potential will offer insightful atomistic knowledge to design alloys for use in harsh environments. 
    more » « less
  2. Alloying is a common technique to optimize the functional properties of materials for thermoelectrics, photovoltaics, energy storage etc. Designing thermoelectric (TE) alloys is especially challenging because it is a multi-property optimization problem, where the properties that contribute to high TE performance are interdependent. In this work, we develop a computational framework that combines first-principles calculations with alloy and point defect modeling to identify alloy compositions that optimize the electronic, thermal, and defect properties. We apply this framework to design n-type Ba 2(1− x ) Sr 2 x CdP 2 Zintl thermoelectric alloys. Our predictions of the crystallographic properties such as lattice parameters and site disorder are validated with experiments. To optimize the conduction band electronic structure, we perform band unfolding to sketch the effective band structures of alloys and find a range of compositions that facilitate band convergence and minimize alloy scattering of electrons. We assess the n-type dopability of the alloys by extending the standard approach for computing point defect energetics in ordered structures. Through the application of this framework, we identify an optimal alloy composition range with the desired electronic and thermal transport properties, and n-type dopability. Such a computational framework can also be used to design alloys for other functional applications beyond TE. 
    more » « less
  3. Superalloy turbine blades for gas turbines may have been the most significant energy and transportation technology development in the last century. It empowered our military prowess, made it possible for civilian aircraft to fly halfway around the world, and now single-crystal blades are employed in gas turbines for energy conversion because of their superior creep resistance over traditional polycrystal alloys. 
    more » « less
  4. The production of wind energy worldwide has increased 20-fold since 2001. Composite material wind turbine blades, typically designed for a 20-year fatigue life, are beginning to come out of service in large numbers. In general, these de-commission blades, composed primarily of glass fibers in a thermoset matrix, are demolished and landfilled. There is little motivation for recycling the composite materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not been proven to be economically viable. This research seeks to establish structural re-use applications for wind turbine blades in civil engineering infrastructure, hypothesizing that advanced composite materials may be an attractive alternative to conventional infrastructure materials (e.g. steel, reinforced concrete). This paper presents an analysis and materials characterization of a 47 meter Clipper C96 wind blade. The primarily numerical analysis is accompanied by materials characterization taken from an un-used Clipper blade donated to the project from the Wind Turbine Testing Center (WTTC). The paper presents a brief background on wind turbine blade adaptive re-use, proposing a hypothetical load bearing application of the Clipper wind blade as an electrical transmission tower structure carrying axial compression, along with flapwise and edgewise bending forces. The paper summarizes the composite laminates and cross-section geometries of the blade and establishes the axial and flexural stiffnesses of the blade at multiple sections along the blade length. From a first-order estimation of applied loads for the tower application, the resulting stresses in the composite materials are estimated and compared to the design material properties for the wind blade as originally constructed. 
    more » « less
  5. Wind energy is widely deployed and will likely grow in service of reducing the world’s dependency on fossil fuels. The first generation of wind turbines are now coming to the end of their service lives, and there are limited options for the reuse or recycling of the composite materials they are made of. Current literature has verified that there is no existing recycling pathway (i.e., mechanical, chemical, thermal methods of recovery, etc.) for end-of-life materials in wind blades that can meet cost parity with landfilling in the US. However, to the authors’ knowledge there is no study to date that uncovers the cost structures associated with repurposing wind turbine blades in the US. Repurposing could offer a cost-competitive advantage through displacement of higher-value products, rather than materials or chemical constituents alone. This study implements life cycle assessment (LCA) and life cycle cost analysis (LCC) to assess the environmental and financial implications at each stage of repurposing wind turbine blades as the primary load-carrying elements for high-voltage transmission line structures in the United States. This case study contribution to knowledge is based on the successful management of construction waste by analyzing an application for repurposing construction demolition waste. Specifically, this study presents an environmental and financial analysis of repurposing wind turbine blades as transmission line poles. Under this case study, our results show that BladePoles have lower greenhouse gas emissions than steel poles, and we anticipate BladePoles will be less costly than steel poles. Overall emissions are most sensitive to combustion emissions, driven primarily by transportation distance and hours of required crane operations during the installation process. Compared to other evaluated recycling methods, repurposing wind blades as BladePoles has the least overall global warming potential. 
    more » « less