skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Conservation of Energy Variables in Simulations of Deep Moist Convection
Abstract It is often assumed in parcel theory calculations, numerical models, and cumulus parameterizations that moist static energy (MSE) is adiabatically conserved. However, the adiabatic conservation of MSE is only approximate because of the assumption of hydrostatic balance. Two alternative variables are evaluated here: MSE − IB and MSE + KE, wherein IB is the path integral of buoyancy (B) and KE is kinetic energy. Both of these variables relax the hydrostatic assumption and are more precisely conserved than MSE. This article quantifies the errors that result from assuming that the aforementioned variables are conserved in large-eddy simulations (LES) of both disorganized and organized deep convection. Results show that both MSE − IB and MSE + KE better predict quantities along trajectories than MSE alone. MSE − IB is better conserved in isolated deep convection, whereas MSE − IB and MSE + KE perform comparably in squall-line simulations. These results are explained by differences between the pressure perturbation behavior of squall lines and isolated convection. Errors in updraftBdiagnoses are universally minimized when MSE − IB is assumed to be adiabatically conserved, but only when moisture dependencies of heat capacity and temperature dependency of latent heating are accounted for. When less accurate latent heat and heat capacity formulae were used, MSE − IB yielded poorerBpredictions than MSE due to compensating errors. Our results suggest that various applications would benefit from using either MSE − IB or MSE + KE instead of MSE with properly formulated heat capacities and latent heats.  more » « less
Award ID(s):
1648681
PAR ID:
10405562
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
78
Issue:
10
ISSN:
0022-4928
Format(s):
Medium: X Size: p. 3229-3246
Size(s):
p. 3229-3246
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Previous observational and modeling studies have suggested that moisture plays a dominant role in Madden–Julian oscillation (MJO) evolution. Using a realistic MJO simulation by incorporating the role of mesoscale stratiform heating in the Zhang–McFarlane deep convection scheme in the National Center for Atmospheric Research Community Atmosphere Model, version 5.3 (NCAR CAM5.3), this study investigates the factors responsible for the improved MJO simulation by examining moisture variations during different MJO phases. The results of column moist static energy (MSE) and moisture budgets show that during the suppressed phases of MJO, vertical advection acts to increase MSE anomalies for the development of deep convection while radiative heating and surface heat flux decrease MSE. The opposite holds true at the MJO mature phase. However, their roles largely cancel each other, leaving horizontal advection to play a major role in the low-level MSE increase during the suppressed phase of the MJO and MSE decrease after the MJO mature phase. A further analysis combining moisture and temperature budget equations is performed to demonstrate the effects of vertical advection and cloud processes within the column at each level. The vertical profiles of column-confined moisture tendency show that large-scale vertical advection induced by latent heat release and evaporation within shallow convective clouds is also important to the lower-tropospheric moistening during suppressed phases. This confirms the role of shallow convection in low-level moistening ahead of MJO deep convection. Radiative heating is vital across all MJO phases, and its warming effects keep the column humidity anomaly maintained in mature phases. None of these features are reproduced by the standard CAM5.3. 
    more » « less
  2. The West African summer monsoon features multiple, complex interactions between African easterly waves (AEWs), moist convection, variable land surface properties, dust aerosols, and the diurnal cycle. One aspect of these interactions, the coupling between convection and AEWs, is explored using observations obtained during the 2006 African Monsoon Multidisciplinary Analyses (AMMA) field campaign. During AMMA, a research weather radar operated at Niamey, Niger, where it surveilled 28 squall-line systems characterized by leading convective lines and trailing stratiform regions. Nieto Ferreira et al. found that the squall lines were linked with the passage of AEWs and classified them into two tracks, northerly and southerly, based on the position of the African easterly jet (AEJ). Using AMMA sounding data, we create a composite of northerly squall lines that tracked on the cyclonic shear side of the AEJ. Latent heating within the trailing stratiform regions produced a midtropospheric positive potential vorticity (PV) anomaly centered at the melting level, as commonly observed in such systems. However, a unique aspect of these PV anomalies is that they combined with a 400–500-hPa positive PV anomaly extending southward from the Sahara. The latter feature is a consequence of the deep convective boundary layer over the hot Saharan Desert. Results provide evidence of a coupling and merging of two PV sources—one associated with the Saharan heat low and another with latent heating—that ends up creating a prominent midtropospheric positive PV maximum to the rear of West African squall lines. 
    more » « less
  3. Abstract Trends in moist static energy (MSE) transport are investigated for the years 1980 through 2018 using four different reanalysis data sets. The reanalysis data sets show agreement in the eddy MSE transport trends and the latitudinal structure of the MSE trends, but vary widely in the trend of the flux of the climatological zonal mean MSE by the anomalous zonal mean meridional wind. The latter dominates the total MSE transport trends in all four data sets. Therefore, none of the four total MSE flux trends is downgradient of the corresponding MSE trend. Further analysis of the MSE trends reveals that dry static energy increases strongly dominate MSE trends at all latitudes, including in the tropics where climate models and theory predict latent energy increases to dominate. As changes in MSE transport are routinely assumed to be downgradient when interpreting changes in climate, including Arctic amplification, further investigation of reanalysis MSE transport is warranted. 
    more » « less
  4. Abstract Ocean surface rain layers (RLs) form when relatively colder, fresher, less dense rain water stably stratifies the upper ocean. RLs cool sea surface temperature (SST) by confining surface evaporative cooling to a thin near‐surface layer, and generate sharp SST gradients between the cool RL and the surrounding ocean. In this study, ocean‐atmosphere coupled simulations of the November 2011 Madden‐Julian Oscillation (MJO) event are conducted with and without RLs to evaluate two pathways for RLs to influence the atmosphere. The first, termed the “SST gradient effect,” arises from the hydrostatic adjustment of the boundary layer to RL‐enhanced SST gradients. The second, termed the “SST effect,” arises from RL‐induced SST reductions impeding the development of deep atmospheric convection. RLs are found to sharpen SST gradients throughout the MJO suppressed and suppressed‐to‐enhanced convection transition phases, but their effect on convection is only detected during the MJO suppressed phase when RL‐induced SST gradients enhance low‐level convergence/divergence and broaden the atmospheric vertical velocity probability distribution below 5 km. The SST effect is more evident than the SST gradient effect during the MJO transition phase, as RLs reduce domain average SST by 0.03 K and narrow vertical velocity distribution, thus delaying onset of deep convection. A delayed SST effect is also identified, wherein frequent RLs during the MJO transition phase isolate accumulated subsurface ocean heat from the atmosphere. The arrival of strong winds at the onset of the MJO active phase erodes RLs and releases subsurface ocean heat to the atmosphere, supporting the development of deep convection. 
    more » « less
  5. Abstract Orographically‐locked diurnal convection involves interactions between local circulation and the thermodynamic environment of convection. Here, the relationships of convective updraft structures over orographic precipitation hotspots and their upstream environment in the TaiwanVVM large‐eddy simulations are analyzed for the occurrence of the orographic locking features. Strong convective updraft columns within heavily precipitating, organized systems exhibit a mass flux profile gradually increasing with height through a deep lower‐tropospheric inflow layer. Enhanced convective development is associated with higher upstream moist static energy (MSE) transport through this deep‐inflow layer via local circulation, augmenting the rain rate by 36% in precipitation hotspots. The simulations provide practical guidance for targeted observations within the most common deep‐inflow path. Preliminary field measurements support the presence of high MSE transport within the deep‐inflow layer when organized convection occurs at the hotspot. Orographically‐locked convection facilitate both modeling and field campaign design to examine the general properties of active deep convection. 
    more » « less