Abstract Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.
more »
« less
Electrically Controlled Liquid Crystal Elastomer Surfaces for Dynamic Wrinkling
Liquid crystal elastomers (LCEs) are becoming increasingly popular as a shape memory material for soft robot actuators that operate in a contractile or flexural mode. There have been previously studies on the use of LCEs for reversible changes in surface topography. However, surface protrusions have typically been limited to the order of 1 μm or depend on light, heat, or electrical stimulation that are difficult to locally control or require relatively high voltage. This article presents a novel operation mode of LCE actuators based on the wrinkling behavior of an LCE‐elastomer bilayer architecture. Embedding a liquid‐metal‐based conductive ink within the LCE enables electrical control of surface wrinkling through Joule heating. The actuator cells can generate wrinkles with amplitudes ranging from 17 to 45 μm within 30 s under an input power of 2 W and a voltage on the order of 1 V. As the bilayer is composed entirely of soft materials, it is highly deformable, flexible, and can be integrated into a multi‐cell array capable of bending on curved surfaces.
more »
« less
- Award ID(s):
- 2047912
- PAR ID:
- 10405613
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control.more » « less
-
Abstract Liquid crystalline elastomers (LCEs) are promising candidates for the development of soft, environmentally‐responsive actuators and have recently been explored for application in smart textiles and soft robotics. To realize the potential of LCEs within these systems, the fast, scalable, and continuous production of LCE filaments at controlled diameters is critical. Here, a wet‐spinning method is presented for the scalable manufacturing of graphene/LCE composite filaments. Through a double diffusion mechanism, the graphene/LCE precursors rapidly crosslink into tangible filaments without the use of UV light, instead taking advantage of solvent exchange and high catalyst influx. The continuous production of polydomain graphene/LCE filaments can achieve speeds up to 4500 m h−1. Through π−π interactions between graphene and the LCE matrix, the composite graphene/LCE filaments across a broad range of diameters (137 to 1128 µm) can be obtained with high integrity, achieving actuation stresses and strains up to 3.66 MPa and 44%, respectively, in 3 s. The filaments are showcased as artificial muscles, where both thin and thick filament sizes are of interest. The presented scalable wet‐spinning method will open new opportunities to design smart textiles and soft robotics from fibers of controlled sizes.more » « less
-
Abstract Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed given the notorious difficulty synthesizing sufficiently large monodomain devices. Here, we use direct-ink writing 3D printing to fabricate bulk (>cm 3 ) monodomain LCE devices and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to 3000 s −1 , our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts – with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation.more » « less
-
Liquid crystalline elastomers (LCEs) are soft materials which disorder upon heating through the isotropic transition temperature. The order-disorder phase transition of LCEs results in a contraction of up to ∼50% along the aligned axis. Motivated by this distinctive stimuli-response, LCEs are increasingly considered as low-density actuators. Generally, LCEs are composed entirely of covalent bonds. Recently, we have prepared LCEs with intramesogenic supramolecular bonds from dimerized oxybenzoic acid derivatives and documented distinctive thermomechanical response in these supramolecular LCEs. Here, we report a detailed investigation of phase transitions in supramolecular LCEs by systematically varying the composition to affect the strength of the intermolecular interactions in the polymer network. The order-disorder phase transition is shown to be influenced by the conformation and dissociation of supramolecular dimers. Distinctly, this report isolates and details an LCE composition which undergoes an intermediate transition to an incommensurate phase at lower temperatures than the order-disorder transition.more » « less
An official website of the United States government
