skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Arabidopsis xylosyltransferases, XXT3 , XXT4 , and XXT5, are essential to complete the fully xylosylated glucan backbone XXXG ‐type structure of xyloglucans
Summary Although most xyloglucans (XyGs) biosynthesis enzymes have been identified, the molecular mechanism that defines XyG branching patterns is unclear. Four out of five XyG xylosyltransferases (XXT1, XXT2, XXT4, and XXT5) are known to add the xylosyl residue from UDP‐xylose onto a glucan backbone chain; however, the function of XXT3 has yet to be demonstrated.Singlexxt3and triplexxt3xxt4xxt5mutantArabidopsis(Arabidopsis thaliana) plants were generated using CRISPR‐Cas9 technology to determine the specific function of XXT3.Combined biochemical, bioinformatic, and morphological data conclusively established for the first time that XXT3, together with XXT4 and XXT5, adds xylosyl residue specifically at the third glucose in the glucan chain to synthesize XXXG‐type XyGs. We propose that the specificity of XXT3, XXT4, and XXT5 is directed toward the prior synthesis of the acceptor substrate by the other two enzymes, XXT1 and XXT2. We also conclude that XXT5 plays a dominant role in the synthesis of XXXG‐type XyGs, while XXT3 and XXT4 complementarily contribute their activities in a tissue‐specific manner.The newly generatedxxt3xxt4xxt5mutant produces only XXGG‐type XyGs, which further helps to understand the impact of structurally deficient polysaccharides on plant cell wall organization, growth, and development.  more » « less
Award ID(s):
1951819 1856477
PAR ID:
10405637
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
238
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1986-1999
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Accumulation of triacylglycerols (TAGs) is crucial during various stages of plant development. InArabidopsis, two enzymes share overlapping functions to produce TAGs, namely acyl‐CoA:diacylglycerol acyltransferase 1 (DGAT1) and phospholipid:diacylglycerol acyltransferase 1 (PDAT1). Loss of function of both genes in adgat1‐1/pdat1‐2double mutant is gametophyte lethal. However, the key regulatory elements controlling tissue‐specific expression of either gene has not yet been identified.We transformed adgat1‐1/dgat1‐1//PDAT1/pdat1‐2parent with transgenic constructs containing theArabidopsis DGAT1promoter fused to theAtDGAT1open reading frame either with or without the first intron.Triple homozygous plants were obtained, however, in the absence of theDGAT1first intron anthers fail to fill with pollen, seed yield isc. 10% of wild‐type, seed oil content remains reduced (similar todgat1‐1/dgat1‐1), and non‐Mendelian segregation of thePDAT1/pdat1‐2locus occurs. Whereas plants expressing theAtDGAT1pro:AtDGAT1transgene containing the first intron mostly recover phenotypes to wild‐type.This study establishes that a combination of the promoter and first intron ofAtDGAT1provides the proper context for temporal and tissue‐specific expression ofAtDGAT1in pollen. Furthermore, we discuss possible mechanisms of intron mediated regulation and how regulatory elements can be used as genetic tools to functionally replace TAG biosynthetic enzymes inArabidopsis. 
    more » « less
  2. Summary Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. TheArabidopsis thaliana plastid ferrochelatasetwo(fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown.Here we characterize onefc2suppressor mutation and map it toCYTIDINE TRIPHOSPHATE SYNTHASE TWO(CTPS2), which encodes one of five enzymes in Arabidopsis necessary forde novocytoplasmic CTP (and dCTP) synthesis.Thectps2mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggestingctps2blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling.Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur. 
    more » « less
  3. Summary Integration ofAgrobacterium tumefacienstransferred DNA (T‐DNA) into the plant genome is the last step required for stable plant genetic transformation. The mechanism of T‐DNA integration remains controversial, although scientists have proposed the participation of various nonhomologous end‐joining (NHEJ) pathways. Recent evidence suggests that inArabidopsis, DNA polymerase θ (PolQ) may be a crucial enzyme involved in T‐DNA integration.We conducted quantitative transformation assays of wild‐type andpolQmutantArabidopsisand rice, analyzed T‐DNA/plant DNA junction sequences, and (forArabidopsis) measured the amount of integrated T‐DNA in mutant and wild‐type tissue.Unexpectedly, we were able to generate stable transformants of all tested lines, although the transformation frequency ofpolQmutants was c.20% that of wild‐type plants. T‐DNA/plant DNA junctions from these transformed rice andArabidopsis polQmutants closely resembled those from wild‐type plants, indicating that loss of PolQ activity does not alter the characteristics of T‐DNA integration events.polQmutant plants show growth and developmental defects, perhaps explaining previous unsuccessful attempts at their stable transformation.We suggest that either multiple redundant pathways function in T‐DNA integration, and/or that integration requires some yet unknown pathway. 
    more » « less
  4. Summary Little is known about long‐distance mesophyll‐driven signals that regulate stomatal conductance. Soluble and/or vapor‐phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance inArabidopsis thalianaby CO2/abscisic acid (ABA) was examined.We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll‐dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene‐signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2]‐shifts.According to our research, higher [CO2] causes Arabidopsis rosettes to produce more ethylene. An ACC‐synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2‐induced stomatal movements. Ethylene‐insensitive receptor (gain‐of‐function),etr1‐1andetr2‐1, and signaling,ein2‐5andein2‐1, mutants showed intact stomatal responses to [CO2]‐shifts, whereas loss‐of‐function ethylene receptor mutants, includingetr2‐3;ein4‐4;ers2‐3,etr1‐6;etr2‐3andetr1‐6, showed markedly accelerated stomatal responses to [CO2]‐shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC‐synthase octuple mutant and accelerated stomatal responses in theetr1‐6;etr2‐3, andetr1‐6, but not in theetr2‐3;ein4‐4;ers2‐3mutants.These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2and ABA. 
    more » « less
  5. Summary IRE1, BI‐1, and bZIP60 monitor compatible plant–potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of threeIRE1isoforms, thebZIP60UandbZIP60S, andBI‐1roles in genetic reprogramming of cells during potexvirus infection.Experiments were performed usingArabidopsis thalianaknockout lines andPlantago asiatica mosaic virusinfectious clone tagged with the green fluorescent protein gene (PlAMV‐GFP).There were more PlAMV‐GFP infection foci inire1a/b,ire1c,bzip60, andbi‐1knockout than wild‐type (WT) plants. Cell‐to‐cell movement and systemic RNA levels were greaterbzip60andbi‐1than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression ofAtIRE1borStbZIP60inire1a/borbzip60mutant background reduced virus infection foci, whileStbZIP60expression influences virus movement. Transgenic overexpression ofStbZIP60also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER.This is the first demonstration of a potatobZIPtranscription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI‐1 contribute separately to virus cell‐to‐cell and systemic movement. 
    more » « less