Abstract Although corticothalamic neurons (CThNs) represent the largest source of synaptic input to thalamic neurons, their role in regulating thalamocortical interactions remains incompletely understood. CThNs in sensory cortex have historically been divided into two types, those with cell bodies in Layer 6 (L6) that project back to primary sensory thalamic nuclei and those with cell bodies in Layer 5 (L5) that project to higher‐order thalamic nuclei and subcortical structures. Recently, diversity among L6 CThNs has increasingly been appreciated. In the rodent somatosensory cortex, two major classes of L6 CThNs have been identified: one projecting to the ventral posterior medial nucleus (VPM‐only L6 CThNs) and one projecting to both VPM and the posterior medial nucleus (VPM/POm L6 CThNs). Using rabies‐based tracing methods in mice, we asked whether these L6 CThN populations integrate similar synaptic inputs. We found that both types of L6 CThNs received local input from somatosensory cortex and thalamic input from VPM and POm. However, VPM/POm L6 CThNs received significantly more input from a number of additional cortical areas, higher order thalamic nuclei, and subcortical structures. We also found that the two types of L6 CThNs target different functional regions within the thalamic reticular nucleus (TRN). Together, our results indicate that these two types of L6 CThNs represent distinct information streams in the somatosensory cortex and suggest that VPM‐only L6 CThNs regulate, via their more restricted circuits, sensory responses related to a cortical column while VPM/POm L6 CThNs, which are integrated into more widespread POm‐related circuits, relay contextual information.
more »
« less
Coregistration of heading to visual cues in retrosplenial cortex
Abstract Spatial cognition depends on an accurate representation of orientation within an environment. Head direction cells in distributed brain regions receive a range of sensory inputs, but visual input is particularly important for aligning their responses to environmental landmarks. To investigate how population-level heading responses are aligned to visual input, we recorded from retrosplenial cortex (RSC) of head-fixed mice in a moving environment using two-photon calcium imaging. We show that RSC neurons are tuned to the animal’s relative orientation in the environment, even in the absence of head movement. Next, we found that RSC receives functionally distinct projections from visual and thalamic areas and contains several functional classes of neurons. While some functional classes mirror RSC inputs, a newly discovered class coregisters visual and thalamic signals. Finally, decoding analyses reveal unique contributions to heading from each class. Our results suggest an RSC circuit for anchoring heading representations to environmental visual landmarks.
more »
« less
- PAR ID:
- 10405958
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.more » « less
-
Abstract In the primate visual system, visual object recognition involves a series of cortical areas arranged hierarchically along the ventral visual pathway. As information flows through this hierarchy, neurons become progressively tuned to more complex image features. The circuit mechanisms and computations underlying the increasing complexity of these receptive fields (RFs) remain unidentified. To understand how this complexity emerges in the secondary visual area (V2), we investigated the functional organization of inputs from the primary visual cortex (V1) to V2 by combining retrograde anatomical tracing of these inputs with functional imaging of feature maps in macaque monkey V1 and V2. We found that V1 neurons sending inputs to single V2 orientation columns have a broad range of preferred orientations, but are strongly biased towards the orientation represented at the injected V2 site. For each V2 site, we then constructed a feedforward model based on the linear combination of its anatomically- identified large-scale V1 inputs, and studied the response proprieties of the generated V2 RFs. We found that V2 RFs derived from the linear feedforward model were either elongated versions of V1 filters or had spatially complex structures. These modeled RFs predicted V2 neuron responses to oriented grating stimuli with high accuracy. Remarkably, this simple model also explained the greater selectivity to naturalistic textures of V2 cells compared to their V1 input cells. Our results demonstrate that simple linear combinations of feedforward inputs can account for the orientation selectivity and texture sensitivity of V2 RFs.more » « less
-
Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy “connectomics” in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning.more » « less
-
Ultra-large mesoscopic imaging advances in the cortex open new pathways to develop neuroprosthetics to restore foveal vision in blind patients. Using targeted optogenetic activation, an optical prosthetic can focally stimulate spatially localized lateral geniculate nucleus (LGN) synaptic boutons within the primary visual cortex (V1). If we localize a cluster within a specific hypercolumn’s input layer, we will find that activation of a subset of these boutons is perceptually fungible with the activation of a different subset of boutons from the same hypercolumn input module. By transducing these LGN neurons with light-sensitive proteins, they are now sensitive to light and we can optogenetically stimulate them in a pattern mimicking naturalistic visual input. Optogenetic targeting of these purely glutamatergic inputs is free from unwanted co-activation of inhibitory neurons (a common problem in electrode-based prosthetic devices, which result in diminished contrast perception). We must prosthetically account for rapidly changing cortical activity and gain control, so our system integrates a real-time cortical read-out mechanism to continually assess and provide feedback to modify stimulation levels, just as the natural visual system does. We accomplish this by readingout a multi-colored array of genetically-encoded and transduced bioluminescent calcium responses in V1 neurons. This hyperspectral array of colors can achieve single-cell resolution. By tracking eye movements in the blind patients, we will account for oculomotor effects by adjusting the contemporaneous stimulation of the LGN boutons to mimic the effects of natural vision, including those from eye movements. This system, called the Optogenetic Brain System (OBServ), is designed to function by optimally activating visual responses in V1 from a fully-implantable coplanar emitter array coupled with a video camera and a bioluminescent read-out system. It follows that if we stimulate the LGN input modules in the same pattern as natural vision, the recipient should perceive naturalistic prosthetic vision. As such, the system holds the promise of restoring vision in the blind at the highest attainable acuity, with maximal contrast sensitivity, using an integrated nanophotonic implantable device that receives eye-tracked video input from a head-mounted video camera, using relatively non-invasive prosthetic technology that does not cross the pia mater of the brain.more » « less
An official website of the United States government
