Abstract Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (∼1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE’s data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date. 
                        more » 
                        « less   
                    This content will become publicly available on April 22, 2026
                            
                            PyReconstruct: A fully opensource, collaborative successor to Reconstruct
                        
                    
    
            Abstract As the serial section community transitions to volume electron microscopy, tools are needed to balance rapid segmentation efforts with documenting the fine detail of structures that support cell function. New annotation applications should be accessible to users and meet the needs of the neuroscience and connectomics communities while also being useful across other disciplines. Issues not currently addressed by a single, modern annotation application include: 1) built-in curation systems with utilities for expert intervention to provide quality assurance, 2) integrated alignment features that allow for image registration on-the-fly as image flaws are discovered during annotation, 3) simplicity for non-specialists within and beyond the neuroscience community, 5) a system to store experimental meta-data with annotation data in a way that researchers remain masked regarding condition to avoid potential biases, 6) local management of large datasets, 7) fully open-source codebase allowing development of new tools, and more. Here, we present PyReconstruct, a modern successor to the Reconstruct annotation tool. PyReconstruct operates in a field-agnostic manner, runs on all major operating systems, breaks through legacy RAM limitations, features an intuitive and collaborative curation system, and employs a flexible and dynamic approach to image registration. It can be used to analyze, display, and publish experimental or connectomics data. PyReconstruct is suited for generating ground truth to implement in automated segmentation, outcomes of which can be returned to PyReconstruct for proofreading and quality control. Significance statementIn neuroscience, the emerging field of connectomics has produced annotation tools for reconstruction that prioritize circuit connectivity across microns to centimeters and farther. Determining the strength of synapses forming the connections is crucial to understand function and requires quantification of their nanoscale dimensions and subcellular composition. PyReconstruct, successor to the early annotation tool Reconstruct, meets these requirements for synapses and other structures well beyond neuroscience. PyReconstruct lifts many restrictions of legacy Reconstruct and offers a user-friendly interface, integrated curation, dynamic alignment, nanoscale quantification, 3D visualization, and more. Extensive compatibility with third-party software provides access to the expanding tools from the connectomics and imaging communities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2014862
- PAR ID:
- 10623763
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The size of image volumes in connectomics studies now reaches terabyte and often petabyte scales with a great diversity of appearance due to different sample preparation procedures. However, manual annotation of neuronal structures (e.g., synapses) in these huge image volumes is time-consuming, leading to limited labeled training data often smaller than 0.001% of the large-scale image volumes in application. Methods that can utilize in-domain labeled data and generalize to out-of-domain unlabeled data are in urgent need. Although many domain adaptation approaches are proposed to address such issues in the natural image domain, few of them have been evaluated on connectomics data due to a lack of domain adaptation benchmarks. Therefore, to enable developments of domain adaptive synapse detection methods for large-scale connectomics applications, we annotated 14 image volumes from a biologically diverse set of Megaphragma viggianii brain regions originating from three different whole-brain datasets and organized the WASPSYN challenge at ISBI 2023. The annotations include coordinates of pre-synapses and post-synapses in the 3D space, together with their one-to-many connectivity information. This paper describes the dataset, the tasks, the proposed baseline, the evaluation method, and the results of the challenge. Limitations of the challenge and the impact on neuroscience research are also discussed. The challenge is and will continue to be available at https://codalab.lisn.upsaclay.fr/competitions/9169. Successful algorithms that emerge from our challenge may potentially revolutionize real-world connectomics research and further the cause that aims to unravel the complexity of brain structure and function.more » « less
- 
            Abstract The field of connectomics aims to reconstruct the wiring diagram of Neurons and synapses to enable new insights into the workings of the brain. Reconstructing and analyzing the Neuronal connectivity, however, relies on many individual steps, starting from high‐resolution data acquisition to automated segmentation, proofreading, interactive data exploration, and circuit analysis. All of these steps have to handle large and complex datasets and rely on or benefit from integrated visualization methods. In this state‐of‐the‐art report, we describe visualization methods that can be applied throughout the connectomics pipeline, from data acquisition to circuit analysis. We first define the different steps of the pipeline and focus on how visualization is currently integrated into these steps. We also survey open science initiatives in connectomics, including usable open‐source tools and publicly available datasets. Finally, we discuss open challenges and possible future directions of this exciting research field.more » « less
- 
            Abstract MotivationSynapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantification of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness of different neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and availability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing a new tool to easily and accurately quantify synapses. ResultsWe present an automatic probability-principled synapse detection algorithm and integrate it into our synapse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data, and can handle multiple staining channels. Through extensive experiments on one synthetic and three real datasets with ground truth annotation or manually labeling, SynQuant was demonstrated to outperform peer specialized unsupervised synapse detection tools as well as generic spot detection methods. Availability and implementationJava source code, Fiji plug-in, and test data are available at https://github.com/yu-lab-vt/SynQuant. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
- 
            Abstract Advances in electron microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets, which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this changing and expanding data landscape. Here we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure that provides scalable solutions for proofreading and flexible annotation support for fast analysis queries at arbitrary time points. Deployed as a suite of web services, CAVE empowers distributed communities to perform reproducible connectome analysis in up to petascale datasets (~1 mm3) while proofreading and annotating is ongoing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
