With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying Internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype, we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, as opposed to IP-only, our hybrid setup achieves better average bitrate and better perceived visual quality (computed via VMAF metric) over live video streaming services. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE.
more »
« less
An NDN-Enabled Fog Radio Access Network Architecture With Distributed In-Network Caching
To meet the increasing demands of next-generation cellular networks (e.g., 6G), advanced networking technologies must be incorporated. On one hand, the Fog Radio Access Network (F-RAN), has been proposed as an enhancement to the Cloud Radio Access Network (C-RAN). On the other hand, efficient network architectures, such as Named Data Networking (NDN), have been recognized as prominent Future Internet candidates. Nevertheless, the interplay between F-RAN and NDN warrants further investigation. In this paper, we propose an NDN-enabled F-RAN architecture featuring a strategy for distributed in-network caching. Through a simulation study, we demonstrate the superiority of the proposed in-network caching strategy in comparison with baseline caching strategies in terms of network resource utilization, cache hits, and front haul channel usage.
more »
« less
- PAR ID:
- 10406315
- Date Published:
- Journal Name:
- International Conference on Communications
- ISSN:
- 2641-0818
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, our hybrid setup achieves better average bitrate over live video streaming services than its IP-only alternative. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE.more » « less
-
Named Data Networking (NDN) is a prominent realization of the vision of Information-Centric Networking. The NDN architecture adopts name-based routing and location-independent data retrieval. Among other important features, NDN integrates security mechanisms and focuses on protecting the content rather than the communications channels. Along with a new architecture come new threats and NDN is no exception. NDN is a potential target for new network attacks such as Interest Flooding Attacks (IFAs). Attackers take advantage of IFA to launch (D)DoS attacks in NDN. Many IFA detection and mitigation solutions have been proposed in the literature. However, there is no comprehensive review study of these solutions that has been proposed so far. Therefore, in this paper, we propose a survey of the various IFAs with a detailed comparative study of all the relevant proposed solutions as counter-measures against IFAs. We also review the requirements for a complete and efficient IFA solution and pinpoint the various issues encountered by IFA detection and mitigation mechanisms through a series of attack scenarios. Finally, in this survey, we offer an analysis of the open issues and future research directions regarding IFAs.more » « less
-
Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms.more » « less
-
This position paper introduces a Dynamic Data Driven Open Radio Access Network System (3D-O-RAN). The key objective of 3D-O-RAN is to support congested, contested and contaminated tactical settings where multimedia sensors, application constraints and operating wireless conditions may frequently change over space, time and frequency. 3D-O-RAN is compliant with the O-RAN specification for beyond 5G cellular systems to reduce costs and guarantee interoperability among vendors. Moreover, 3D-O-RAN integrates computational, sensing, and cellular networking components in a highly-dynamic, feedback-based, data-driven control loop. Specifically, 3D-O-RAN is designed to incorporate heterogeneous data into the network control loop to achieve a system-wide optimal operating point. Moreover, 3D-O-RAN steers the multimedia sensor measurement process in real time according to the required application needs and current physical and/or environmental constraints. 3D-O-RAN uses (i) a semantic slicing engine, which takes into account the semantic of the application to optimally compress the multimedia stream without losing in classification accuracy; (ii) a dynamic data driven neural network certification system that translates mission-level constraints into technical-level constraints on neural network latency/accuracy, and occupation of hardware/software resources. Realistic use-case scenarios of 3D-O-RAN in a tactical context demonstrate system performance.more » « less
An official website of the United States government

