skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: True optical spatial derivatives for direct phase gradient measurements
This paper shows analytically and numerically that a vortex plate coupled to a neutral density filter can deliver a true optical spatial derivative when placed at the focal plane of a 2flens pair. This technique turns any intensity or phase variations of coherent light into an intensity that is proportional to the square of the norm of the initial variation gradient. Since the optical derivative removes the uniform background, it is possible to measure the mode numbers of spatial phase gradients or fluctuations optically, without using any interferometer.  more » « less
Award ID(s):
1943939
PAR ID:
10406377
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Continuum
Volume:
2
Issue:
4
ISSN:
2770-0208
Format(s):
Medium: X Size: Article No. 838
Size(s):
Article No. 838
Sponsoring Org:
National Science Foundation
More Like this
  1. Spectroscopy and hyperspectral imaging are widely used tools for identifying compounds and materials. One optical design is a polarization interferometer that uses birefringent wedges, like a Babinet-Soleil compensator, to create the interferograms that are Fourier transformed to give the spectra. Such designs have lateral spatial offset between thenoandneoptical beams, which reduces the interferogram intensity and creates a spatially dependent phase that is problematic for hyperspectral imaging. The lateral separation between the beams is wavelength dependent, created by the achromatic nature of Babinet-Soleil compensators. We introduce a birefringent wedge design for Fourier transform spectroscopy that creates collinearnoandneoptical beams for optimal interference and no spatial dependent phase. Our 3-wedge design, which we call a Wisconsin interferometer, improves the signal strength of polarization spectrometers, and eliminates phase shifts in hyperspectral imaging. We anticipate that it will find use in analytical, remote sensing, and ultrafast spectroscopy applications. 
    more » « less
  2. VO2-based MEMS tunable optical shutters are demonstrated. The design consists of a VO2-based cantilever attached to a VO2-based optical window with integrated resistive heaters for individual mechanical actuation of the cantilever structure, tuning of the optical properties of the window, or both. Optical transmittance measurements as a function of current for both heaters demonstrates that the developed devices can be used as analog optical shutters, where the intensity of a light beam can be tuned to any value within the range of VO2phase transition. A transmittance drop off 30% is shown for the optical window, with tuning capabilities greater than 30% upon actuation of the cantilever. Unlike typical mechanical shutters, these devices are not restricted to binary optical states. Optical modulation of the optical window is demonstrated with an oscillating electrical input. This produces a transmittance signal that oscillates around an average value within the range off VO2’s phase transition. For an input current signal with fixed amplitude (fel= 0.28 Hz), tuned to be at the onset of the phase transition, a transmittance modulation of 14% is shown. Similarly, by modulating the DC-offset, a transmittance modulation of VO2along the hysteresis is obtained. 
    more » « less
  3. A majority of ultracold atom experiments utilize resonant absorption imaging techniques to obtain the atomic density. To make well-controlled quantitative measurements, the optical intensity of the probe beam must be precisely calibrated in units of the atomic saturation intensityIsat. In quantum gas experiments, the atomic sample is enclosed in an ultra-high vacuum system that introduces loss and limits optical access; this precludes a direct determination of the intensity. Here, we use quantum coherence to create a robust technique for measuring the probe beam intensity in units ofIsatvia Ramsey interferometry. Our technique characterizes the ac Stark shift of the atomic levels due to an off-resonant probe beam. Furthermore, this technique gives access to the spatial variation of the probe intensity at the location of the atomic cloud. By directly measuring the probe intensity just before the imaging sensor our method in addition yields a direct calibration of imaging system losses as well as the quantum efficiency of the sensor. 
    more » « less
  4. Third harmonic generation (THG) provides a valuable, label-free approach to imaging biological systems. To date, THG microscopy has been performed using point-scanning methods that rely on intensity measurements lacking phase information of the complex field. We report the first demonstration, to the best of our knowledge, of THG holographic microscopy and the reconstruction of the complex THG signal field with spatial synthetic aperture imaging. Phase distortions arising from measurement-to-measurement fluctuations and imaging components cause optical aberrations in the reconstructed THG field. We have developed an aberration-correction algorithm that estimates and corrects these phase distortions to reconstruct the spatial synthetic aperture THG field without optical aberrations. 
    more » « less
  5. A spatial channel network (SCN) was recently proposed toward the forthcoming spatial division multiplexing (SDM) era, in which the optical layer is explicitly evolved to the hierarchical SDM and wavelength division multiplexing layers, and an optical node is decoupled into a spatial cross-connect (SXC) and wavelength cross-connect to achieve an ultrahigh-capacity optical network in a highly economical manner. In this paper, we report feasibility demonstrations of an evolution scenario regarding the SCN architecture to enhance the flexibility and functionality of spatial channel networking from a simplefixed-core-accessanddirectionalspatial channel ring network to a multidegree,any-core-access,nondirectional, andcore-contentionlessmesh SCN. As key building blocks of SXCs, we introduce what we believe to be novel optical devices: a 1 ×<#comment/> 2 multicore fiber (MCF) splitter, a core selector (CS), and a core and port selector (CPS). We construct free-space optics-based prototypes of these devices using five-core MCFs. Detailed performance evaluations of the prototypes in terms of the insertion loss (IL), polarization-dependent loss (PDL), and intercore cross talk (XT) are conducted. The results show that the prototypes provide satisfactorily low levels of IL, PDL, and XT. We construct a wide variety of reconfigurable spatial add/drop multiplexers (RSADMs) and SXCs in terms of node degree, interport cross-connection architecture, and add/drop port connectivity flexibilities. Such RSADMs/SXCs include a fixed-core-access and directional RSADM using a 1 ×<#comment/> 2 MCF splitter; an any-core-access, nondirectional SXC with core-contention using a CS; and an any-core-access, nondirectional SXC without core-contention using a CPS. Bit error rate performance measurements for SDM signals that traverse the RSADMs/SXCs confirm that there is no or a very slight optical signal-to-noise-ratio penalty from back-to-back performance. We also experimentally show that the flexibilities in the add/drop port of the SXCs allow us to recover from a single or concurrent double link failure with a wide variety of options in terms of availability and cost-effectiveness. 
    more » « less