Biological nitrogen fixation is the conversion of dinitrogen (N2) gas into bioavailable nitrogen by microorganisms with consequences for primary production, ecosystem function, and global climate. Here we present a compiled dataset of 4793 nitrogen fixation (N2-fixation) rates measured in the water column and benthos of inland and coastal systems via the acetylene reduction assay, 15N2 labeling, or N2/Ar technique. While the data are distributed across seven continents, most observations (88%) are from the northern hemisphere. 15N2 labeling accounted for 67% of water column measurements, while the acetylene reduction assay accounted for 81% of benthic N2-fixation observations. Dataset median area-, volume-, and mass-normalized N2-fixation rates are 7.1 μmol N2-N m−2 h−1, 2.3 × 10−4 μmol N2-N L−1 h−1, and 4.8 × 10−4 μmol N2-N g−1 h−1, respectively. This dataset will facilitate future efforts to study and scale N2-fixation contributions across inland and coastal aquatic environments.
more »
« less
Evidence of Downregulation in Atmospheric Nitrogen-Fixation Associated with Native Hawaiian Sugarcane (Saccharum officinarum L.) Cultivars
The study of nitrogen fixation in sugarcane has a long history that has demonstrated high potential but with substantial variation in results. This 32-month study sought to assess the response of nitrogen fixation associated with sugarcane (Saccharum officinarum L. cvs. ‘Akoki, Honua‘ula, and ‘Ula) to available soil nitrogen. Plants were grown in large pots of perlite along with a fixing and a non-fixing plant control and administered liquid fertigation with varying amounts of isotopically enriched nitrogen. Assessment of nitrogen fixation utilized nitrogen isotope tracing and acetylene reduction assay in the target and control plants. Isotope enrichment and acetylene reduction assay both indicated that nitrogen fixation peaked under low nitrogen application, and declined with higher application rates, with agreement between the two methods. These results suggest that sugarcane engages in a downregulation of nitrogen fixation under high nitrogen availability, potentially explaining the high variation in published experimental results. This suggests that nitrogen management and fertilization strategy can impact the atmospheric inputs of nitrogen in sugarcane cultivation, and the potential to improve nitrogen application efficiency in cropping systems utilizing sugarcane.
more »
« less
- Award ID(s):
- 1941595
- PAR ID:
- 10406437
- Date Published:
- Journal Name:
- Plants
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2223-7747
- Page Range / eLocation ID:
- 605
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The production of dihydrogen (H2) is an enigmatic yet obligate component of biological dinitrogen (N2) fixation. This study investigates the effect on H2production by N2fixing cyanobacteria when they are exposed to either air or a gas mixture consisting of argon, oxygen, and carbon dioxide (Ar:O2:CO2). In the absence of N2, nitrogenase diverts the flow of electrons to the production of H2, which becomes a measure of Total Nitrogenase Activity (TNA). This method of argon‐induced hydrogen production (AIHP) is much less commonly used to infer rates of N2fixation than the acetylene reduction (AR) assay. We provide here a full evaluation of the AIHP method and demonstrate its ability to achieve high‐resolution measurements of TNA in a gas exchange flow‐through system. Complete diel profiles of H2production were obtained for N2fixing cyanobacteria despite the absence of N2that broadly reproduced the temporal patterns observed by the AR assay. Comparison of H2production under air versus Ar:O2:CO2revealed the efficiency of electron usage during N2fixation and place these findings in the broader context of cell metabolism. Ultimately, AIHP is demonstrated to be a viable alternative to the AR assay with several additional merits that provide an insight into cell physiology and promise for successful field application.more » « less
-
Abstract Plants adjust their allocation to different organs based on nutrient supply. In some plant species, symbioses with nitrogen‐fixing bacteria that live in root nodules provide an alternate pathway for nitrogen acquisition. Does access to nitrogen‐fixing bacteria modify plants' biomass allocation? We hypothesized that access to nitrogen‐fixing bacteria would have the same effect on allocation to aboveground versus belowground tissues as access to plentiful soil nitrogen. To test this hypothesis and related hypotheses about allocation to stems versus leaves and roots versus nodules, we conducted experiments with 15 species of nitrogen‐fixing plants in two separate greenhouses. In each, we grew seedlings with and without access to symbiotic bacteria across a wide gradient of soil nitrogen supply. As is common, uninoculated plants allocated relatively less biomass belowground when they had more soil nitrogen. As we hypothesized, nitrogen fixation had a similar effect as the highest level of fertilization on allocation aboveground versus belowground. Both nitrogen fixation and high fertilization led to ~10% less biomass allocated belowground (~10% more aboveground) than the uninoculated, lowest fertilization treatment. Fertilization reduced allocation to nodules relative to roots. The responses for allocation of aboveground tissues to leaves versus stems were not as consistent across greenhouses or species as the other allocation trends, though more nitrogen fixation consistently led to relatively more allocation to leaves when soil nitrogen supply was low. Synthesis: Our results suggest that symbiotic nitrogen fixation causes seedlings to allocate relatively less biomass belowground, with potential implications for competition and carbon storage in early forest development.more » « less
-
Cory, Jenny (Ed.)Abstract Nitrogen (N) is a key nutrient required by all living organisms for growth and development, but is a limiting resource for many organisms. Organisms that feed on material with low N content, such as wood, might be particularly prone to N limitation. In this study, we investigated the degree to which the xylophagous larvae of the stag beetle Ceruchus piceus (Weber) use associations with N-fixing bacteria to acquire N. We paired acetylene reduction assays by cavity ring-down absorption spectroscopy (ARACAS) with 15N2 incubations to characterize rates of N fixation within C. piceus. Not only did we detect significant N fixation activity within C. piceus larvae, but we calculated a rate that was substantially higher than most previous reports for N fixation in insects. While taking these measurements, we discovered that N fixation within C. piceus can decline rapidly in a lab setting. Consequently, our results demonstrate that previous studies, which commonly keep insects in the lab for long periods of time prior to and during measurement, may have systematically under-reported rates of N fixation in insects. This suggests that within-insect N fixation may contribute more to insect nutrition and ecosystem-scale N budgets than previously thought.more » « less
-
Biological nitrogen fixation converts inert di-nitrogen gas into bioavailable nitrogen and can be an important source of bioavailable nitrogen to organisms. This dataset synthesizes the aquatic nitrogen fixation rate measurements across inland and coastal waters. Data were derived from papers and datasets published by April 2022 and include rates measured using the acetylene reduction assay (ARA), 15N2 labeling, or the N2/Ar technique. The dataset is comprised of 4793 nitrogen fixation rates measurements from 267 studies, and is structured into four tables: 1) a reference table with sources from which data were extracted, 2) a rates table with nitrogen fixation rates that includes habitat, substrate, geographic coordinates, and method of measuring N2 fixation rates, 3) a table with supporting environmental and chemical data for a subset of the rate measurements when data were available, and 4) a data dictionary with definitions for each variable in each data table. This dataset was compiled and curated by the NSF-funded Aquatic Nitrogen Fixation Research Coordination Network (award number 2015825).more » « less
An official website of the United States government

