Recent cosmological analyses with largescale structure and weak lensing measurements, usually referred to as 3 × 2pt, had to discard a lot of signal to noise from small scales due to our inability to accurately model nonlinearities and baryonic effects. Galaxy–galaxy lensing, or the position–shear correlation between lens and source galaxies, is one of the three twopoint correlation functions that are included in such analyses, usually estimated with the mean tangential shear. However, tangential shear measurements at a given angular scale θ or physical scale R carry information from all scales below that, forcing the scale cuts applied in real data to be significantly larger than the scale at which theoretical uncertainties become problematic. Recently, there have been a few independent efforts that aim to mitigate the nonlocality of the galaxy–galaxy lensing signal. Here, we perform a comparison of the different methods, including the Ytransformation, the pointmass marginalization methodology, and the annular differential surface density statistic. We do the comparison at the cosmological constraints level in a combined galaxy clustering and galaxy–galaxy lensing analysis. We find that all the estimators yield equivalent cosmological results assuming a simulated Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1 like setup and more »
 Authors:
 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
 Publication Date:
 NSFPAR ID:
 10406916
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 522
 Issue:
 1
 Page Range or eLocationID:
 p. 412425
 ISSN:
 00358711
 Publisher:
 Oxford University Press
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT Galaxy intrinsic alignments (IAs) have long been recognized as a significant contaminant to weak lensingbased cosmological inference. In this paper we seek to quantify the impact of a common modelling assumption in analytic descriptions of IAs: that of spherically symmetric dark matter haloes. Understanding such effects is important as the current generation of IA models are known to be limited, particularly on small scales, and building an accurate theoretical description will be essential for fully exploiting the information in future lensing data. Our analysis is based on a catalogue of 113 560 galaxies between z = 0.06 and 1.00 from massiveblackii, a hydrodynamical simulation of box length $100 \, h^{1}$ Mpc. We find satellite anisotropy contributes at the level of $\ge 30\!\!40{{\ \rm per\ cent}}$ to the smallscale alignment correlation functions. At separations larger than $1 \, h^{1}$ Mpc the impact is roughly scale independent, inducing a shift in the amplitude of the IA power spectra of $\sim 20{{\ \rm per\ cent}}$. These conclusions are consistent across the redshift range and between the massiveblackii and the illustris simulations. The cosmological implications of these results are tested using a simulated likelihood analysis. Synthetic cosmic shear data are constructed with the expected characteristics (depth, area, andmore »

ABSTRACT We measure the smallscale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibrecollisions using Pairwise Inverse Probability weights, which give unbiased clustering measurements on all scales. We fit to the monopole and quadrupole moments and to the projected correlation function over the separation range $760\, h^{1}{\rm Mpc}$ with a model based on the aemulus cosmological emulator to measure the growth rate of cosmic structure, parametrized by fσ8. We obtain a measurement of fσ8(z = 0.737) = 0.408 ± 0.038, which is 1.4σ lower than the value expected from 2018 Planck data for a flat ΛCDM model, and is more consistent with recent weaklensing measurements. The level of precision achieved is 1.7 times better than more standard measurements made using only the largescale modes of the same sample. We also fit to the data using the full range of scales $0.1\text{}60\, h^{1}{\rm Mpc}$ modelled by the aemulus cosmological emulator and find a 4.5σ tension in the amplitude of the halo velocity field with the Planck + ΛCDM model, driven by a mismatch on the nonlinear scales. This may not be cosmological in origin, and could be due to a breakdown in the Halo Occupation Distribution model used inmore »

ABSTRACT We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudoCℓ method and complement the analysis of the twopoint correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important crosscheck. Using the same fiducial Lambda cold dark matter model as in the DES Y3 realspace analysis, we find ${S_8 \equiv \sigma _8 \sqrt{\Omega _{\rm m}/0.3} = 0.793^{+0.038}_{0.025}}$, which further improves to S8 = 0.784 ± 0.026 when including shear ratios. This result is within expected statistical fluctuations from the realspace constraint, and in agreement with DES Y3 analyses of nonGaussian statistics, but favours a slightly higher value of S8, which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include smallmore »

ABSTRACT The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of lowredshift matter clustering, especially if it is extended to the nonlinear regime. To this end, we use an Nbody and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colourselected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scaleindependent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $r_p=0.3\!\!30.0\, h^{1} \, \mathrm{Mpc}$. For a $3{{\ \rm per\ cent}}$ prior on Alens we forecast precisions of $1.9{{\ \rm per\ cent}}$, $2.0{{\ \rm per\ cent}}$, and $1.9{{\ \rm per\ cent}}$ on Ωm, σ8, and $S_8 \equiv \sigma _8\Omega _m^{0.5}$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $r_p=0.3\!\!3.0\, h^{1} \, \mathrm{Mpc}$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($3.0\!\!30.0\, h^{1} \, \mathrm{Mpc}$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $1{{\more »

ABSTRACT In this work, we present the galaxy clustering measurements of the two DES lens galaxy samples: a magnitudelimited sample optimized for the measurement of cosmological parameters, maglim, and a sample of luminous red galaxies selected with the redmagic algorithm. maglim/redmagic sample contains over 10 million/2.5 million galaxies and is divided into six/five photometric redshift bins spanning the range z ∈ [0.20, 1.05]/z ∈ [0.15, 0.90]. Both samples cover 4143 $\deg ^2$ over which we perform our analysis blind, measuring the angular correlation function with an S/N ∼ 63 for both samples. In a companion paper, these measurements of galaxy clustering are combined with the correlation functions of cosmic shear and galaxy–galaxy lensing of each sample to place cosmological constraints with a 3 × 2pt analysis. We conduct a thorough study of the mitigation of systematic effects caused by the spatially varying survey properties and we correct the measurements to remove artificial clustering signals. We employ several decontamination methods with different configurations to ensure the robustness of our corrections and to determine the systematic uncertainty that needs to be considered for the final cosmology analyses. We validate our fiducial methodology using lognormal mocks, showing that our decontamination procedure induces biases no greatermore »