skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A mixed invariant of nonorientable surfaces in equivariant Khovanov homology
We construct a mixed invariant of nonorientable surfaces from the Lee and Bar-Natan deformations of Khovanov homology and use it to distinguish pairs of surfaces bounded by the same knot, including some exotic examples.  more » « less
Award ID(s):
1810893 1905717
PAR ID:
10406981
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
375
Issue:
1063
ISSN:
0002-9947
Page Range / eLocation ID:
8807 to 8849
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate model simulations project different regimes of summertime temperature distribution changes under a quadrupling of CO2for dry land, moist land, and oceanic surfaces. The entire temperature distribution shifts over dry land surfaces, while moist land surfaces feature an elongated upper tail of the distribution, with extremes increasing more than the corresponding means by ∼20% of the global mean warming. Oceanic surfaces show weaker warming relative to land surfaces, with no significant elongation of the upper tail. Dry land surfaces show little change in turbulent sensible (SH) or latent (LH) fluxes, with new balance reached with compensating adjustments among downwelling and upwelling radiative fluxes. By contrast, moist land surfaces show enhanced partitioning of turbulent flux toward SH, while oceanic surfaces show enhanced partitioning toward LH. Amplified warming of extreme temperatures over moist land surfaces is attributed to suppressed evapotranspiration and larger Bowen ratios. 
    more » « less
  2. Abstract Achieving mobile liquid droplets on solid surfaces is crucial for various practical applications, such as self‐cleaning and anti‐fouling coatings. The last two decades have witnessed remarkable progress in designing functional surfaces, including super‐repellent surfaces and lubricant‐infused surfaces, which allow droplets to roll/slide on the surfaces. However, it remains a challenge to enable droplet motion on hydrophilic solid surfaces. In this work, we demonstrate mobile droplets containing ionic surfactants on smooth hydrophilic surfaces that are charged similarly to surfactant molecules. The ionic surfactant‐laden droplets display ultra‐low contact angle and ultra‐low sliding angle simultaneously on the hydrophilic surfaces. The sliding of the droplet is enabled by the adsorbed surfactant ahead of three‐phase contact line, which is regulated by the electrostatic interaction between ionic surfactant and charged solid surface. The droplet can maintain its motion even when the hydrophilic surface has defects. Furthermore, we demonstrate controlled manipulation of ionic surfactant‐laden droplets on hydrophilic surfaces with different patterns. We envision that our simple technique for achieving mobile droplets on hydrophilic surfaces can pave the way to novel slippery surfaces for different applications. 
    more » « less
  3. Abstract Slippery surfaces (i.e., surfaces that display high liquid droplet mobility) are receiving significant attention due to their biofluidic applications. Non‐textured, all‐solid, slippery hydrophilic (SLIC) surfaces are an emerging class of rare and counter‐intuitive surfaces. In this work, the interactions of blood and bacteria with SLIC surfaces are investigated. The SLIC surfaces demonstrate significantly lower platelet and leukocyte adhesion (≈97.2% decrease in surface coverage), and correspondingly low platelet activation, as well as significantly lower bacterial adhesion (≈99.7% decrease in surface coverage of liveEscherichia Coliand ≈99.6% decrease in surface coverage of liveStaphylococcus Aureus) and proliferation compared to untreated silicon substrates, indicating their potential for practical biomedical applications. The study envisions that the SLIC surfaces will pave the path to improved biomedical devices with favorable blood and bacteria interactions. 
    more » « less
  4. Abstract. We describe explicitly the geometric compactifications, obtained by adding slc surfaces X with ample canonical class, for two connected components in the moduli space of surfaces of general type: Campedelli surfaces with \pi_1(X) = Z^3_2 and Burniat surfaces with K^2 = 6. 
    more » « less
  5. We study the geometry of smooth projective surfaces defined by Frobenius forms, a class of homogenous polynomials in prime characteristic recently shown to have minimal possible F-pure threshold among forms of the same degree. We call these surfaces extremal surfaces, and show that their geometry is reminiscent of the geometry of smooth cubic surfaces, especially non-Frobenius split cubic surfaces. For instance, extremal surfaces have many lines but no triangles, hence many “star points” analogous to Eckardt points on a cubic surface. We generalize the classical notion of a double six for cubic surfaces to a double 2d on an extremal surface of degree d. We show that, asymptotically in d, smooth extremal surfaces have at least (1/16)d^{14} double 2d's. A key element of the proofs is the large automorphism group of an extremal surface, which we show to act transitively on many associated sets, such as the set of triples of skew lines on the extremal surface. 
    more » « less