Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques. During flapping-wing flight, wings, hinges, and tendons of pterygote insects endure large deformation and high stress hundreds of times each second, highlighting the outstanding flexibility and fatigue resistance of biological structures and materials. In comparison, engineered materials and microscale structures in subgram micro–aerial vehicles (MAVs) exhibit substantially shorter lifespans. Consequently, most subgram MAVs are limited to hovering for less than 10 seconds or following simple trajectories at slow speeds. Here, we developed a 750-milligram flapping-wing MAV that demonstrated substantially improved lifespan, speed, accuracy, and agility. With transmission and hinge designs that reduced off-axis torsional stress and deformation, the robot achieved a 1000-second hovering flight, two orders of magnitude longer than existing subgram MAVs. This robot also performed complex flight trajectories with under 1-centimeter root mean square error and more than 30 centimeters per second average speed. With a lift-to-weight ratio of 2.2 and a maximum ascending speed of 100 centimeters per second, this robot demonstrated double body flips at a rotational rate exceeding that of the fastest aerial insects and larger MAVs. These results highlight insect-like flight endurance, precision, and agility in an at-scale MAV, opening opportunities for future research on sensing and power autonomy.
more »
« less
Modular and Scalable Fabrication of Insect‐Scale Aerial Robots toward Demonstrating Swarm Flights
Insects can navigate in cluttered spaces and perform challenging functions such as pollination and collective object transport. By exploiting scaling laws and bioinspired designs, insect‐scale micro‐aerial‐vehicles (MAVs) have demonstrated impressive flight capabilities such as in‐flight collision resilience and acrobatic maneuvers. However, existing subgram MAVs are difficult to design, construct, and repair. Coupled with challenges in robot sensing and control, existing subgram MAVs have not achieved insect‐like swarm flight, which limits potential studies of swarm behaviors and future applications such as collective sensing. Herein, a new design and fabrication method is developed to substantially improve the fabrication scalability of subgram MAVs. Based on a small set of design parameters, an automated algorithm generates the laser cut files of microrobotic components. To reduce fabrication and assembly time, stereolithographic 3D printing is used for making static components such as the airframe and connectors. The modular design enables straightforward assembly and repair, which reduces the overall fabrication time by over 2 times. Owing to the ease of fabrication and good reliability, two subgram MAVs demonstrate controlled hovering flight and coordinated lifting of an object. This result lays the foundation for future robotic studies of collective insect flight.
more »
« less
- Award ID(s):
- 2236708
- PAR ID:
- 10406990
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved. Here, we present our 3D printed artificial feathers consisting of hierarchical vane structures with feature dimensions spanning from 10−2to 102mm, which have remarkable structural, mechanical and aerodynamic resemblance to natural feathers. The multi-step, multi-scale 3D printing process used in this work can provide scalability for the fabrication of artificial feathers tailored to the specific size requirements of aircraft wings. Moreover, we provide the printed feathers with embedded aerodynamic sensing ability through the integration of customized piezoresistive and piezoelectric transducers for strain and vibration measurements, respectively. Hence, the 3D printed feather transducers combine the aerodynamic advantages from the hierarchical feather structure design with additional aerodynamic sensing capabilities, which can be utilized in future biomechanical studies on birds and can contribute to advancements in high-performance adaptive MAVs.more » « less
-
Researchers of team behavior have long been interested in the essential components of effective teamwork. Much existing research focuses on examining correlations between team member traits, team processes, and team outcomes, such as collective intelligence or team performance. However, these approaches are insufficient for providing insight into the dynamic, causal mechanisms through which the components of teamwork interact with one another and impact the emergence of team outcomes. Advances in the field of animal behavior have enabled a precise understanding of the behavioral mechanisms that enable groups to perform feats that surpass the capabilities of the individuals that comprise them. In this manuscript, we highlight how studies of animal swarm intelligence can inform research on collective intelligence in human teams. By improving the ability to obtain precise, time-varying measurements of team behaviors and outcomes and building upon approaches used in studies of swarm intelligence to analyze and model individual and group-level behaviors, researchers can gain insight into the mechanisms underlying the emergence of collective intelligence. Such understanding could inspire targeted interventions to improve team effectiveness and support the development of a comparative framework of group-level intelligence in animal and human groups.more » « less
-
Insect-scale robots face two major locomotive challenges: constrained energetics and large obstacles that far exceed their size. Terrestrial locomotion is efficient yet mostly limited to flat surfaces. In contrast, flight is versatile for overcoming obstacles but requires high power to stay aloft. Here, we present a hopping design that combines a subgram flapping-wing robot with a telescopic leg. Our robot can hop continuously while controlling jump height and frequency in the range of 1.5 to 20 centimeters and 2 to 8.4 hertz. The robot can follow positional set points, overcome tall obstacles, and traverse challenging surfaces. It can also hop on a dynamically rotating plane, recover from strong collisions, and perform somersaults. Compared to flight, this design reduces power consumption by 64 percent and increases payload by 10 times. Although the robot relies on offboard power and control, the substantial payload and efficiency improvement open opportunities for future study on autonomous locomotion.more » « less
-
We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.more » « less
An official website of the United States government
