skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contrastive Dual Gating: Learning Sparse Features With Contrastive Learning
Award ID(s):
1652866
PAR ID:
10407168
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Contrastive learning learns visual representations by enforcing feature consistency under different augmented views. In this work, we explore contrastive learning from a new perspective. Interestingly, we find that quantization, when properly engineered, can enhance the effectiveness of contrastive learning. To this end, we propose a novel contrastive learning framework, dubbed Contrastive Quant, to encourage feature consistency under both differently augmented inputs via various data transformations and differently augmented weights/activations via various quantization levels. Extensive experiments, built on top of two state-of-the-art contrastive learning methods SimCLR and BYOL, show that Contrastive Quant consistently improves the learned visual representation. 
    more » « less
  2. Contrastive learning is an effective unsupervised method in graph representation learning. The key component of contrastive learning lies in the construction of positive and negative samples. Previous methods usually utilize the proximity of nodes in the graph as the principle. Recently, the data-augmentation-based contrastive learning method has advanced to show great power in the visual domain, and some works have extended this method from images to graphs. However, unlike the data augmentation on images, the data augmentation on graphs is far less intuitive and it is much harder to provide high-quality contrastive samples, which leaves much space for improvement. In this work, by introducing an adversarial graph view for data augmentation, we propose a simple but effective method,Adversarial Graph Contrastive Learning(ArieL), to extract informative contrastive samples within reasonable constraints. We develop a new technique calledinformation regularizationfor stable training and use subgraph sampling for scalability. We generalize our method from node-level contrastive learning to the graph level by treating each graph instance as a super-node.ArieLconsistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks on real-world datasets. We further demonstrate thatArieLis more robust in the face of adversarial attacks. 
    more » « less
  3. Graph representation learning is crucial for many real-world ap- plications (e.g. social relation analysis). A fundamental problem for graph representation learning is how to effectively learn rep- resentations without human labeling, which is usually costly and time-consuming. Graph contrastive learning (GCL) addresses this problem by pulling the positive node pairs (or similar nodes) closer while pushing the negative node pairs (or dissimilar nodes) apart in the representation space. Despite the success of the existing GCL methods, they primarily sample node pairs based on the node- level proximity yet the community structures have rarely been taken into consideration. As a result, two nodes from the same community might be sampled as a negative pair. We argue that the community information should be considered to identify node pairs in the same communities, where the nodes insides are seman- tically similar. To address this issue, we propose a novel Graph Communal Contrastive Learning (π‘”πΆπ‘œπ‘œπΏ) framework to jointly learn the community partition and learn node representations in an end-to-end fashion. Specifically, the proposed π‘”πΆπ‘œπ‘œπΏ consists of two components: a Dense Community Aggregation (𝐷𝑒𝐢𝐴) algo- rithm for community detection and a Reweighted Self-supervised Cross-contrastive (𝑅𝑒𝑆𝐢) training scheme to utilize the community information. Additionally, the real-world graphs are complex and often consist of multiple views. In this paper, we demonstrate that the proposed π‘”πΆπ‘œπ‘œπΏ can also be naturally adapted to multiplex graphs. Finally, we comprehensively evaluate the proposed π‘”πΆπ‘œπ‘œπΏ on a variety of real-world graphs. The experimental results show that the π‘”πΆπ‘œπ‘œπΏ outperforms the state-of-the-art methods. 
    more » « less