- Award ID(s):
- 2212418
- PAR ID:
- 10467078
- Publisher / Repository:
- Transactions on Machine Learning Research
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Contrastive learning learns visual representations by enforcing feature consistency under different augmented views. In this work, we explore contrastive learning from a new perspective. Interestingly, we find that quantization, when properly engineered, can enhance the effectiveness of contrastive learning. To this end, we propose a novel contrastive learning framework, dubbed Contrastive Quant, to encourage feature consistency under both differently augmented inputs via various data transformations and differently augmented weights/activations via various quantization levels. Extensive experiments, built on top of two state-of-the-art contrastive learning methods SimCLR and BYOL, show that Contrastive Quant consistently improves the learned visual representation.more » « less
-
Graph representation learning is crucial for many real-world ap- plications (e.g. social relation analysis). A fundamental problem for graph representation learning is how to effectively learn rep- resentations without human labeling, which is usually costly and time-consuming. Graph contrastive learning (GCL) addresses this problem by pulling the positive node pairs (or similar nodes) closer while pushing the negative node pairs (or dissimilar nodes) apart in the representation space. Despite the success of the existing GCL methods, they primarily sample node pairs based on the node- level proximity yet the community structures have rarely been taken into consideration. As a result, two nodes from the same community might be sampled as a negative pair. We argue that the community information should be considered to identify node pairs in the same communities, where the nodes insides are seman- tically similar. To address this issue, we propose a novel Graph Communal Contrastive Learning (ππΆπππΏ) framework to jointly learn the community partition and learn node representations in an end-to-end fashion. Specifically, the proposed ππΆπππΏ consists of two components: a Dense Community Aggregation (π·ππΆπ΄) algo- rithm for community detection and a Reweighted Self-supervised Cross-contrastive (π πππΆ) training scheme to utilize the community information. Additionally, the real-world graphs are complex and often consist of multiple views. In this paper, we demonstrate that the proposed ππΆπππΏ can also be naturally adapted to multiplex graphs. Finally, we comprehensively evaluate the proposed ππΆπππΏ on a variety of real-world graphs. The experimental results show that the ππΆπππΏ outperforms the state-of-the-art methods.more » « less
-
Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.