skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent Advances in Digital Biosensing Technology
Digital biosensing assays demonstrate remarkable advantages over conventional biosensing systems because of their ability to achieve single-molecule detection and absolute quantification. Unlike traditional low-abundance biomarking screening, digital-based biosensing systems reduce sample volumes significantly to the fL-nL level, which vastly reduces overall reagent consumption, improves reaction time and throughput, and enables high sensitivity and single target detection. This review presents the current technology for compartmentalizing reactions and their applications in detecting proteins and nucleic acids. We also analyze existing challenges and future opportunities associated with digital biosensing and research opportunities for developing integrated digital biosensing systems.  more » « less
Award ID(s):
2144216
PAR ID:
10407380
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biosensors
Volume:
12
Issue:
9
ISSN:
2079-6374
Page Range / eLocation ID:
673
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microbial foodborne pathogens present significant challenges to public health and the food industry, requiring rapid and accurate detection methods to prevent infections and ensure food safety. Conventional single biosensing techniques often exhibit limitations in terms of sensitivity, specificity, and rapidity. In response, there has been a growing interest in multimodal biosensing approaches that combine multiple sensing techniques to enhance the efficacy, accuracy, and precision in detecting these pathogens. This review investigates the current state of multimodal biosensing technologies and their potential applications within the food industry. Various multimodal biosensing platforms, such as opto-electrochemical, optical nanomaterial, multiple nanomaterial-based systems, hybrid biosensing microfluidics, and microfabrication techniques are discussed. The review provides an in-depth analysis of the advantages, challenges, and future prospects of multimodal biosensing for foodborne pathogens, emphasizing its transformative potential for food safety and public health. This comprehensive analysis aims to contribute to the development of innovative strategies for combating foodborne infections and ensuring the reliability of the global food supply chain. 
    more » « less
  2. Over the last decade, facial landmark tracking and 3D reconstruction have gained considerable attention due to their numerous applications such as human-computer interactions, facial expression analysis, and emotion recognition, etc. Traditional approaches require users to be confined to a particular location and face a camera under constrained recording conditions (e.g., without occlusions and under good lighting conditions). This highly restricted setting prevents them from being deployed in many application scenarios involving human motions. In this paper, we propose the first single-earpiece lightweight biosensing system, BioFace-3D, that can unobtrusively, continuously, and reliably sense the entire facial movements, track 2D facial landmarks, and further render 3D facial animations. Our single-earpiece biosensing system takes advantage of the cross-modal transfer learning model to transfer the knowledge embodied in a high-grade visual facial landmark detection model to the low-grade biosignal domain. After training, our BioFace-3D can directly perform continuous 3D facial reconstruction from the biosignals, without any visual input. Without requiring a camera positioned in front of the user, this paradigm shift from visual sensing to biosensing would introduce new opportunities in many emerging mobile and IoT applications. Extensive experiments involving 16 participants under various settings demonstrate that BioFace-3D can accurately track 53 major facial landmarks with only 1.85 mm average error and 3.38\% normalized mean error, which is comparable with most state-of-the-art camera-based solutions. The rendered 3D facial animations, which are in consistency with the real human facial movements, also validate the system's capability in continuous 3D facial reconstruction. 
    more » « less
  3. Neurotransmitters are crucial for the proper functioning of neural systems, with dopamine playing a pivotal role in cognition, emotions, and motor control. Dysregulated dopamine levels are linked to various disorders, underscoring the need for accurate detection in research and diagnostics. Single-stranded DNA (ssDNA) aptamers are promising bioreceptors for dopamine detection due to their selectivity, improved stability, and synthesis feasibility. However, discrepancies in dopamine specificity have presented challenges. Here, we surface-functionalized a nano-plasmonic biosensing platform with a dopamine-specific ssDNA aptamer for selective detection. The biosensor, featuring narrowband hybrid plasmonic resonances, achieves high specificity through functionalization with aptamers and passivation processes. Sensitivity and selectivity for dopamine detection are demonstrated across a wide range of concentrations, including in diverse biological samples like protein solutions, cerebrospinal fluid, and whole blood. These results highlight the potential of plasmonic “aptasensors” for developing rapid and accurate diagnostic tools for disease monitoring, medical diagnostics, and targeted therapies. 
    more » « less
  4. Abstract High‐sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity‐improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity‐improving strategies are introduced, which can be developed into “plug‐and‐play” modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion‐limit‐breaking systems for enhancing sensor–analyte contact and subsequent analyte recognition by fluid‐mixing and analyte‐concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step. 
    more » « less
  5. Abstract Nondestructive neurotransmitter detection and real‐time monitoring of stem cell differentiation are both of great significance in the field of neurodegenerative disease and regenerative medicine. Although luminescent biosensing nanoprobes have been developed to address this need, they have intrinsic limitations such as autofluorescence, scattering, and phototoxicity. Upconversion nanoparticles (UCNPs) have gained increasing attention for various biomedical applications due to their high photostability, low auto‐fluorescent background, and deep tissue penetration; however, UCNPs also suffer from low emission intensities due to undesirable energy migration pathways. To address the aforementioned issue, a single‐crystal core–shell–shell “sandwich” structured UCNP is developed that is designed to minimize deleterious energy back‐transfer to yield bright visible emissions using low power density excitations. These UCNPs show a remarkable enhancement of luminescent output relative to conventional β‐NaYF4:Yb,Er codoped UCNPs and β‐NaYF4:Yb,Er@NaYF4:Yb “active shell” alike. Moreover, this advanced core–shell–shell UCNP is subsequently used to develop a highly sensitive biosensor for the ultrasensitive detection of dopamine released from stem cell‐derived dopaminergic‐neurons. Given the challenges of in situ detection of neurotransmitters, the developed NIR‐based biosensing of neurotransmitters in stem cell‐derived neural interfaces present a unique tool for investigating single‐cell mechanisms associated with dopamine, or other neurotransmitters, and their roles in neurological processes. 
    more » « less