This paper presents a compact phased-array antenna for efficient and high-gain millimeter-wave-based 3D beam steering applications. The proposed antenna array consists of 2 × 2 unit cells and each unit cell is a sub-array comprising of 2 × 2 patch elements connected to microstrip lines that are co-fed by a single coaxial cable. Two 45° phase shifting lines are incorporated in each sub-array to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna are 24 × 24 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 58.4 GHz with an operational bandwidth from 50.1 GHz to 77.5 GHz along with a high gain of 26.8 dBi. The array exhibits a maximum beam steering range of 105° in the elevation plane and 195° in the azimuth plane with a gain variation less than 0.9 dBi.
more »
« less
A 24 GHz Flexible 10 × 10 Phased Array Antenna for 3D Beam Steering Based V2V Applications
This paper presents a flexible 10 × 10 phased-array antenna for efficient and high-gain 3D beam steering applications. The proposed antenna array consists of 25 quadrants of 2 × 2 unit cells, wherein each 2 × 2 unit cell is coaxially fed. The 45° phase shifting lines are incorporated in the feeding paths to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna (PAA) are 90 × 90 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 24 GHz with an operational bandwidth from 23.64 GHz to 24.31 GHz along with a high gain of 29.4 dBi. The array exhibits a maximum beam steering range of 149.8° in the θ axis and 120° in the ϕ axis with a gain variation less than 0.9 dBi. The proposed flexible PAA is suitable for its placement on curved surfaces of autonomous vehicles such as UAVs(Unmanned aerial vehicles).
more »
« less
- Award ID(s):
- 2148178
- NSF-PAR ID:
- 10407731
- Date Published:
- Journal Name:
- 2022 IEEE International Symposium on Phased Array Systems & Technology (PAST)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents the design of a compact 4 × 4 antenna array suitable for unmanned aerial vehicle-to-vehicle (V2V) communication applications. The proposed antenna array can offer a narrow beamwidth, high gain, wide beam steering capability and is highly compact. The substrate material used is Rogers 5880 with a thickness of 0.2 mm, and copper is used for the patch and ground material with 0.14 mm thickness. The di-electric constant and the tangent loss of the Rogers substrate are 2.2 and 0.0004, respectively. 45° phase shifters are incorporated in the feeding paths to facilitate the beamsteering. The dimensions of the proposed antenna array are 32 × 32 × 0.48 mm 3 . The designed antenna array has the resonating frequency at 24 GHz and has a bandwidth of 0.83 GHz (3.5% fractional bandwidth). The measured far field gain of the designed antenna array is 16.7 dBi. The beamwidth derived from the array’s far-field radiation pattern is 14.6°, and the maximum beam steering range of the array is 102° along the θ axis.more » « less
-
This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper.more » « less
-
This paper presents a low-cost, beam-steerable 4 × 10 antenna array system operating at 60 GHz. The proposed antenna system is fed by a 4 × 10 Butler Matrix network designed using microstrip line (ML) structure. Chebyshev tapered microstrip antenna arrays with 10 series-fed elements are connected to four output ports of the feed network. Four steerable beams with maximum 16.5 dBi system gain and 1GHz bandwidth(BW) satisfy the requirements of millimeter wave propagation study and handset application for 5G communication.more » « less
-
This paper presents a high-gain and broadband radial elliptical-slot array (RESA) antenna with side-lobe mitigation technique for low-cost satellite communication systems. The aperture of the proposed slot array antenna comprises a set of orthogonal elliptical slots with monotonic slot length variation alongside the radius of the aperture. The design comprises radiating slotted top plate and bottom ground plate parallel to one another separated by an optimal distance of 5.25 mm which is 1.05λ . The design is back-fed using a disk-head radiator probe. The overall dimensions of the proposed slot array antenna with the air-gap taken into account are 300×300×5.75mm3 . Simulation results show that the proposed slot array antenna has a broadband operating frequency range from 45 GHz to 110 GHz and beyond, covering both V and W frequency bands with a fractional bandwidth of 88.8%. The peak gain of the proposed design is 35.6 dBi at 60 GHz. The array exhibits a maximum half-power beam width of 9.5°, a low sidelobe magnitude of - 4.12 dBi and a overall simple design indicates its suitability for low-cost SATCOM (satellite communications) applications.more » « less