skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A V-band Phased-Array Antenna for Millimeter-Wave-Based 3D Beam Steering Applications
This paper presents a compact phased-array antenna for efficient and high-gain millimeter-wave-based 3D beam steering applications. The proposed antenna array consists of 2 × 2 unit cells and each unit cell is a sub-array comprising of 2 × 2 patch elements connected to microstrip lines that are co-fed by a single coaxial cable. Two 45° phase shifting lines are incorporated in each sub-array to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna are 24 × 24 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 58.4 GHz with an operational bandwidth from 50.1 GHz to 77.5 GHz along with a high gain of 26.8 dBi. The array exhibits a maximum beam steering range of 105° in the elevation plane and 195° in the azimuth plane with a gain variation less than 0.9 dBi.  more » « less
Award ID(s):
2148178
PAR ID:
10407732
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a flexible 10 × 10 phased-array antenna for efficient and high-gain 3D beam steering applications. The proposed antenna array consists of 25 quadrants of 2 × 2 unit cells, wherein each 2 × 2 unit cell is coaxially fed. The 45° phase shifting lines are incorporated in the feeding paths to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna (PAA) are 90 × 90 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 24 GHz with an operational bandwidth from 23.64 GHz to 24.31 GHz along with a high gain of 29.4 dBi. The array exhibits a maximum beam steering range of 149.8° in the θ axis and 120° in the ϕ axis with a gain variation less than 0.9 dBi. The proposed flexible PAA is suitable for its placement on curved surfaces of autonomous vehicles such as UAVs(Unmanned aerial vehicles). 
    more » « less
  2. This paper presents the design of a compact 4 × 4 antenna array suitable for unmanned aerial vehicle-to-vehicle (V2V) communication applications. The proposed antenna array can offer a narrow beamwidth, high gain, wide beam steering capability and is highly compact. The substrate material used is Rogers 5880 with a thickness of 0.2 mm, and copper is used for the patch and ground material with 0.14 mm thickness. The di-electric constant and the tangent loss of the Rogers substrate are 2.2 and 0.0004, respectively. 45° phase shifters are incorporated in the feeding paths to facilitate the beamsteering. The dimensions of the proposed antenna array are 32 × 32 × 0.48 mm 3 . The designed antenna array has the resonating frequency at 24 GHz and has a bandwidth of 0.83 GHz (3.5% fractional bandwidth). The measured far field gain of the designed antenna array is 16.7 dBi. The beamwidth derived from the array’s far-field radiation pattern is 14.6°, and the maximum beam steering range of the array is 102° along the θ axis. 
    more » « less
  3. This paper presents modeling and optimization of the steering range of a microstrip planar phased array antenna to steer the unidirectional near-field focused beam towards a certain direction. This antenna can be implemented in headstage-based neural stimulation system and wireless recording system for optogenetic neuromodulation applications. The proposed phased-array antenna consists of sixteen elements that are designed to provide a uniform power transmission over the 27 cm×23 cm×16 cm rat behavioral cage area. The proposed transmitter (TX) antenna implements a near-field-based wireless power transmission system operating at 2.4 GHz frequency. The phased array antenna steers the beam from -30° to 60° in the elevation plane by feeding the individual elements with different phases using four 4-bit phase shifters. A design analysis of the beam-steering approach of the phased array antenna is presented and the corresponding simulation and measurement results are included in this paper. 
    more » « less
  4. This paper presents a fully 3D-printed wideband mm-wave beam-steering antenna concept capable of performing wide-angle electronic beam-steering by making use of zigzagged lens antenna subarrays (LASs) with curved focal surfaces. The concept is demonstrated through the design and realization of a 38 GHz antenna consisting of L=4 dielectric slab waveguide (DSW) lenses each fed with structurally embedded M=6 TEM horn antennas, which can effectively reduce the required number of phase shifters (PSs) from N=M×L=24 to L=4 . It is demonstrated that the joint utilization of zigzagged LAS and curved focal surfaces with structurally integrated TEM horn antennas, all enabled through the design flexibilities offered by the emerging additive manufacturing (AM) technology, improves the realized gain, side lobe level (SLL), and beam-steering range in comparison to the earlier versions realized with planar focal surfaces. Specifically, the antenna exhibits a simulated realized gain of 16.5 dBi with an H-plane beam-steering range exceeding ±45° and a half-power beamwidth (HPBW) of 4.5° while maintaining an SLL below –9.3 dB across the entirety of the scan range. Measurements taken with the manufactured antenna prototype show excellent agreement with the performance obtained from full-wave simulations. 
    more » « less
  5. This paper presents a magnetic sensor based autotracking method for a phased array based wireless power transfer system to be implemented in neuromodulation applications. This method is proposed to track the position of the receiver(placed on a freely moving animal) and transmit the microwave signal with a focused beam to the target receiver. The coordinate locations of the target are obtained from the magnetic sensor and converted into phase information for the phased array. The system is constructed by a 2.4 GHz near-field 4×4 phased array transmitter antenna with 4-bit phase shifters. The phased array TX antenna steers the beam from -5° to -155° in the θ plane. The magnetic sensor can detect the location of the receiver and the in this steering range. The process of tracking the the target and focusing the beam has been evaluated by simulation. 
    more » « less