Subgrid data from earth system models are a powerful, yet underutilized, data resource for investigating the climatic impacts of land use and land cover change (LULCC). In this paper, we describe a global dataset on subgrid land surface climate variables produced by the Community Earth System Model in a fully coupled mode. The simulation was conducted at a 0.9° × 1.25° resolution under the Representative Concentration Pathway (RCP) 8.5 scenario from 2015 to 2100. Data are archived for eight subgrid tiles (urban, rural, tree, grass, shrub, bare soil, crop and lake) and include variables on the physical state, surface energy fluxes, runoff and atmospheric forcing conditions. Archival intervals are monthly, daily and hourly. Meta data on land surface parameters are also available. The data files are stored in NetCDF‐4 (Network Common Data Form, version 4) format and the meta data follow the latest Coupled Model Intercomparison Project phase 6 standards. We anticipate that this dataset will become a useful resource for characterizing local climate changes due to LULCC. This dataset can be downloaded from the Harvard Dataverse (
- Award ID(s):
- 1933630
- NSF-PAR ID:
- 10408584
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- Volume:
- 24
- Issue:
- 3
- ISSN:
- 1525-755X
- Page Range / eLocation ID:
- 373 to 388
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.7910/DVN/HUXAH6 ). -
Abstract The increase in wildfire risk in the United States in recent decades has been linked to rapid growth of the wildland‐urban interface and to changing climate. While there have been numerous studies on wildfires and climate change, few have separately assessed the impact of climate response to land‐use‐land‐cover change (LULCC) on wildfires. In this study, we analyse two 10‐year regional climate simulations driven by the current (2011) and future (2100) land‐use‐land‐cover patterns to assess modifications by the projected LULCC to the frequency and severity of fire‐prone atmospheric conditions described by two fire weather indices, the Canadian Forest Fire Weather Index and the Hot‐Dry‐Windy Index. The simulation corresponding to future land‐use‐land‐cover pattern yields higher surface temperature and vapour pressure deficit and lower precipitation compared to the simulation with the current pattern in areas where urbanized landscapes replace forests and grasslands, such as along the Piedmont and outside the Chicagoland region, while in areas where croplands replace forests, such as the southeast Coastal Plains, the results are reversed. These changes to local and regional atmospheric conditions lead to longer fire seasons and more extreme fire‐weather conditions in much of the eastern United States, specifically in the Southeast and Ohio River Valley where significant urban expansion is projected by the end of the century. Whereas in Southern California where some highly flammable shrublands will be replaced by urban or crop lands, fire‐prone atmospheric conditions are likely to be less frequent and less extreme in the future. However, much of California moves towards a year‐round fire season under the projected LULCC. The results suggest that by altering atmospheric conditions, LULCC may play an important role in determining fire regime, but the effects are highly heterogeneous and regionalized.
-
null (Ed.)Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ.more » « less
-
Abstract Earlier studies of land use land cover change (LULCC) normally used only a specified LULCC map with no interannual variations. In this study, using an Atmospheric General Circulation Model (AGCM) coupled with a land surface model, biophysical impacts of LULCC on global and regional climate are investigated by using a LULCC map which covers 63 years from 1948 to 2010 with interannual variation. A methodology has been developed to convert a recently developed LULCC fraction map with 1° × 1° resolution to the AGCM grid points in which only one dominant type is allowed. Comprehensive evaluations are conducted to ensure consistency of the trend of the original LULCC fraction change and the trend of the fraction of grid point changes over different regions. The model was integrated with a potential vegetation map (CTL) and the map with LULCC, in which a set of surface parameters such as leaf area index, albedo and other soil and vegetation parameters were accordingly changed with interannual variation. The results indicate that the interannual LULCC map simulation is able to reproduce better interannual variability of surface temperature and rainfall when compared to the control simulation. LULCC causes negative effect on global precipitation, with the strongest significant signals over degraded regions such as East Asia, West Africa and South America, and some of these changes are consistent with observed regional anomalies for certain time periods. LULCC causes reduction in net radiation and evapotranspiration which leads to changes in monsoon circulation and variation in magnitude and pattern of moisture flux convergence and subsequent reduction in precipitation. Meanwhile, LULCC enhances surface warming during the summer in the LULCC regions due to greatly reduced evapotranspiration. In contradiction to the surface, upper troposphere temperatures are cool because of less latent heat released into the upper troposphere, which leads to weaker circulation in LULCC regions.
-
Abstract Prior research indicates that land use and land cover change (LULCC) in the central United States has led to significant changes in surface climate. The spatial resolution of simulations is particularly relevant in this region due to its influence on model skill in capturing mesoscale convective systems (MCSs) and on representing the spatial heterogeneity. Recent advances in Earth system models (ESMs) make it feasible to use variable resolution (VR) meshes to study regional impacts of LULCC while avoiding inconsistencies introduced by lateral boundary conditions typically seen in limited area models. Here, we present numerical experiments using the Community Earth System Model version 2–VR to evaluate (1) the influence of resolution and land use on model skill and (2) impacts of LULCC over the central United States at different resolutions. These simulations are configured either on the 1° grid or a VR grid with grid refinement to 1/8° over the contiguous United States for the period of 1984–2010 with two alternative land use data sets corresponding to the preindustrial and present day states. Our results show that skill in simulating precipitation over the central United States is primarily dependent on resolution, whereas skill in simulating 2‐m temperature is more dependent on accurate land use. The VR experiments show stronger LULCC‐induced precipitation increases over the Midwest in May and June, corresponding to an increase in the number of MCS‐like features and a more conductive thermodynamic environment for convection. Our study demonstrates the potential of using VR ESMs for hydroclimatic simulations in regions with significant LULCC.