skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Isolation by distance in populations with power-law dispersal
Abstract Limited dispersal of individuals between generations results in isolation by distance, in which individuals further apart in space tend to be less related. Classic models of isolation by distance assume that dispersal distances are drawn from a thin-tailed distribution and predict that the proportion of the genome that is identical by descent between a pair of individuals should decrease exponentially with the spatial separation between them. However, in many natural populations, individuals occasionally disperse over very long distances. In this work, we use mathematical analysis and coalescent simulations to study the effect of long-range (power-law) dispersal on patterns of isolation by distance. We find that it leads to power-law decay of identity-by-descent at large distances with the same exponent as dispersal. We also find that broad power-law dispersal produces another, shallow power-law decay of identity-by-descent at short distances. These results suggest that the distribution of long-range dispersal events could be estimated from sequencing large population samples taken from a wide range of spatial scales.  more » « less
Award ID(s):
2146260 1806833
PAR ID:
10408675
Author(s) / Creator(s):
;
Editor(s):
Ross-Ibarra, J
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
13
Issue:
4
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increase in genetic distance between marine individuals or populations with increasing distance has often been assumed to be influenced by dispersal distance. In turn, dispersal distance has often been assumed to correlate strongly with pelagic larval duration (PLD). We examined the consistency of these assumptions in species with long planktonic durations. Reviewing multiple marine species, Selkoe & Toonen (2011; Mar Ecol Prog Ser 436:291-305) demonstrated significant fit of a species’ PLD with metrics of genetic distance between sampling sites. However, for long dispersers (PLD >10 d) whose dispersal is more influenced by ocean currents, the fit of PLD and genetic connectivity metrics was not significant. We tested if using realistic ocean currents to determine simulated dispersal distances would produce an improved proxy for larval dispersal that correlates more strongly with genetic connectivity metrics. We estimated the dispersal distance of propagules for locations in the genetic studies compiled by Selkoe and Toonen with a global ocean model (Mercator, 1/12° resolution). The model-derived estimates of dispersal distance did not correlate better than PLD against the genetic diversity metrics globalFSTkm-1and isolation-by-distance (IBD) slope. We explored 2 explanations: (1) our ocean circulation-based dispersal distance estimates are too simple to produce biologically meaningful improvement over PLD, and (2) IBD slope is not a powerful predictor of variation in dispersal distance between species with long PLD. Exploring these explanations suggests directions for future research which will enable better quantitative understanding of genetic diversity and its spatial distribution in coastal marine organisms. 
    more » « less
  2. Abstract The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome‐resolved metagenomic analyses of benthicMicrocoleus‐dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64 Microcoleusgenomes were clustered into three species that shared >96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (>300 km). Within the most commonMicrocoleusspecies, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometres), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π) as mats in larger downstream subwatersheds, within‐mat genetic diversity does not appear to depend on the downstream accumulation of upstream‐derived strains. The four‐gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene‐flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed. 
    more » « less
  3. Abstract Across taxa, individuals vary in how far they disperse, with most individuals staying close to their origin and fewer dispersing long distances. Costs associated with dispersal (e.g., energy, risk) are widely believed to trade off with benefits (e.g., reduced competition, increased reproductive success) to influence dispersal propensity. However, this framework has not been applied to understand variation in dispersal distance, which is instead generally attributed to extrinsic environmental factors. We alternatively hypothesized that variation in dispersal distances results from trade‐offs associated with other aspects of locomotor performance. We tested this hypothesis in the stream salamanderGyrinophilus porphyriticusand found that salamanders that dispersed farther in the field had longer forelimbs but swam at slower velocities under experimental conditions. The reduced swimming performance of long‐distance dispersers likely results from drag imposed by longer forelimbs. Longer forelimbs may facilitate moving longer distances, but the proximate costs associated with reduced swimming performance may help to explain the rarity of long‐distance dispersal. The historical focus on environmental drivers of dispersal distances misses the importance of individual traits and associated trade‐offs among traits affecting locomotion. 
    more » « less
  4. By dispersing seeds long distances, large, fruit-eating animals influence plant population spread and community dynamics. After fruit consumption, animal gut passage time and movement determine seed dispersal patterns and distances. These, in turn, are influenced by extrinsic, environmental variables and intrinsic, individual-level variables. We simulated seed dispersal by forest elephants ( Loxodonta cyclotis ) by integrating gut passage data from wild elephants with movement data from 96 individuals. On average, elephants dispersed seeds 5.3 km, with 89% of seeds dispersed farther than 1 km. The longest simulated seed dispersal distance was 101 km, with an average maximum dispersal distance of 40.1 km. Seed dispersal distances varied among national parks, perhaps due to unmeasured environmental differences such as habitat heterogeneity and configuration, but not with human disturbance or habitat openness. On average, male elephants dispersed seeds farther than females. Elephant behavioral traits strongly influenced dispersal distances, with bold, exploratory elephants dispersing seeds 1.1 km farther than shy, idler elephants. Protection of forest elephants, particularly males and highly mobile, exploratory individuals, is critical to maintaining long distance seed dispersal services that shape plant communities and tropical forest habitat. 
    more » « less
  5. Abstract In high-latitude species with high dispersal ability, such as long-distance migratory birds, populations are often assumed to exhibit little genetic structure due to high gene flow or recent postglacial expansion. We sequenced over 120 low-coverage whole genomes from across the breeding range of a long-distance migratory bird, the Veery (Catharus fuscescens), revealing strong evidence for isolation by distance. Additionally, we found distinct genetic structure between boreal, western montane U.S., and southern Appalachian sampling regions. We suggest that population genetic structure in this highly migratory species is detectable with the high resolution afforded by whole-genomic data because, similar to many migratory birds, the Veery exhibits high breeding-site fidelity, which likely limits gene flow. Resolution of isolation by distance across the breeding range was sufficient to assign likely breeding origins of individuals sampled in this species’ poorly understood South American nonbreeding range, demonstrating the potential to assess migratory connectivity in this species using genomic data. As the Veery’s breeding range extends across both historically glaciated and unglaciated regions in North America, we also evaluated whether contemporary patterns of structure and genetic diversity are consistent with historical population isolation in glacial refugia. We found that patterns of genetic diversity did not support southern montane regions (southern Appalachians or western U.S. mountains) as glacial refugia. Overall, our findings suggest that isolation by distance yields subtle associations between genetic structure and geography across the breeding range of this highly vagile species even in the absence of obvious historical vicariance or contemporary barriers to dispersal. 
    more » « less