skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An empirical Bayes approach to stochastic blockmodels and graphons: shrinkage estimation and model selection
The graphon (W-graph), including the stochastic block model as a special case, has been widely used in modeling and analyzing network data. Estimation of the graphon function has gained a lot of recent research interests. Most existing works focus on inference in the latent space of the model, while adopting simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the identified latent variables. In this work, we propose a hierarchical model and develop a novel empirical Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function. Based on our hierarchical model, we further introduce a new model selection criterion for choosing the number of communities. Numerical results on extensive simulations and two well-annotated social networks demonstrate the superiority of our approach in terms of parameter estimation and model selection.  more » « less
Award ID(s):
1952929
PAR ID:
10428618
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PeerJ Computer Science
Volume:
8
ISSN:
2376-5992
Page Range / eLocation ID:
e1006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study transfer learning for estimation in latent variable network models. In our setting, the conditional edge probability matrices given the latent variables are represented by P for the source and Q for the target. We wish to estimate Q given two kinds of data: (1) edge data from a subgraph induced by an o(1) fraction of the nodes of Q, and (2) edge data from all of P. If the source P has no relation to the target Q, the estimation error must be Ω(1). However, we show that if the latent variables are shared, then vanishing error is possible. We give an efficient algorithm that utilizes the ordering of a suitably defined graph distance. Our algorithm achieves o(1) error and does not assume a parametric form on the source or target networks. Next, for the specific case of Stochastic Block Models we prove a minimax lower bound and show that a simple algorithm achieves this rate. Finally, we empirically demonstrate our algorithm's use on real-world and simulated graph transfer problems. 
    more » « less
  2. Abstract Decomposition‐based solution algorithms for optimization problems depend on the underlying latent block structure of the problem. Methods for detecting this structure are currently lacking. In this article, we propose stochastic blockmodeling (SBM) as a systematic framework for learning the underlying block structure in generic optimization problems. SBM is a generative graph model in which nodes belong to some blocks and the interconnections among the nodes are stochastically dependent on their block affiliations. Hence, through parametric statistical inference, the interconnection patterns underlying optimization problems can be estimated. For benchmark optimization problems, we show that SBM can reveal the underlying block structure and that the estimated blocks can be used as the basis for decomposition‐based solution algorithms which can reach an optimum or bound estimates in reduced computational time. Finally, we present a general software platform for automated block structure detection and decomposition‐based solution following distributed and hierarchical optimization approaches. 
    more » « less
  3. This paper studies stochastic games on large graphs and their graphon limits. We propose a new formulation of graphon games based on a single typical player’s label-state distribution. In contrast, other recently proposed models of graphon games work directly with a continuum of players, which involves serious measure-theoretic technicalities. In fact, by viewing the label as a component of the state process, we show in our formulation that graphon games are a special case of mean field games, albeit with certain inevitable degeneracies and discontinuities that make most existing results on mean field games inapplicable. Nonetheless, we prove the existence of Markovian graphon equilibria under fairly general assumptions as well as uniqueness under a monotonicity condition. Most importantly, we show how our notion of graphon equilibrium can be used to construct approximate equilibria for large finite games set on any (weighted, directed) graph that converges in cut norm. The lack of players’ exchangeability necessitates a careful definition of approximate equilibrium, allowing heterogeneity among the players’ approximation errors, and we show how various regularity properties of the model inputs and underlying graphon lead naturally to different strengths of approximation. Funding: D. Lacker was partially supported by the Air Force Office of Scientific Research [Grant FA9550-19-1-0291] and the National Science Foundation [Award DMS-2045328]. 
    more » « less
  4. null (Ed.)
    We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information. 
    more » « less
  5. null (Ed.)
    We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information. 
    more » « less