skip to main content

Title: Equity implications of electric vehicles: A systematic review on the spatial distribution of emissions, air pollution and health impacts

Scaling up electric vehicles (EVs) provides an avenue to mitigate both carbon emissions and air pollution from road transport. The benefits of EV adoption for climate, air quality, and health have been widely documented. Yet, evidence on the distribution of these impacts has not been systematically reviewed, despite its central importance to ensure a just and equitable transition. Here, we perform a systematic review of recent EV studies that have examined the spatial distribution of the emissions, air pollution, and health impacts, as an important aspect of the equity implications. Using the Context-Interventions-Mechanisms-Outcome framework with a two-step search strategy, we narrowed down to 47 papers that met our inclusion criteria for detailed review and synthesis. We identified two key factors that have been found to influence spatial distributions. First, the cross-sectoral linkages may result in unintended impacts elsewhere. For instance, the generation of electricity to charge EVs, and the production of batteries and other materials to manufacture EVs could increase the emissions and pollution in locations other than where EVs are adopted. Second, since air pollution and health are local issues, additional location-specific factors may play a role in determining the spatial distribution, such as the wind transport of more » pollution, and the size and vulnerability of the exposed populations. Based on our synthesis of existing evidence, we highlight two important areas for further research: (1) fine-scale pollution and health impact assessment to better characterize exposure and health disparities across regions and population groups; and (2) a systematic representation of the EV value chain that captures the linkages between the transport, power and manufacturing sectors as well as the regionally-varying activities and impacts.

« less
; ; ;
Publication Date:
Journal Name:
Environmental Research Letters
Page Range or eLocation-ID:
Article No. 053001
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ammonia (NH3) emissions from fertilizer application is a highly uncertain input to chemical transport models (CTMs). Reducing such uncertainty is important for improving predictions of ambient NH3and PM2.5concentrations, for regulatory and policy purposes and for exploring linkages of air pollution to human health and ecosystem services. Here, we implement a spatially and temporally resolved inventory of NH3emissions from fertilizers, based on high-resolution crop maps, crop nitrogen demand and a process model, as input to the Comprehensive Air Quality Model with Extensions (CAMx). We also examine sensitivity to grid resolution, by developing inputs at 12 km × 12 km and 4 km × 4 km, for the Corn Belt region in the Midwest United States, where NH3emissions from chemical fertilizer application contributes to approximately 50% of anthropogenic emissions. Resulting predictions of ambient NH3and PM2.5concentrations were compared to predictions developed using the baseline 2011 National Emissions Inventory, and evaluated for closure with ground observations for May 2011. While CAMx consistently underpredicted NH3concentrations for all scenarios, the new emissions inventory reduced bias in ambient NH3concentration by 33% at 4 km × 4 km, and modestly improved predictions of PM2.5, at 12 km × 12 km (correlation coefficients r = 0.57 for PM2.5, 0.88 for PM-NH4, 0.71 for PM-SO4, 0.52 for PM-NO3). Ourmore »findings indicate that in spite of controlling for total magnitude of emissions and for meteorology, representation of NH3emissions and choice of grid resolution within CAMx impacts the total magnitude and spatial patterns of predicted ambient NH3and PM2.5concentrations. This further underlines the need for improvements in NH3emission inventories. For future research, our results also point to the need for better understanding of the effect of model spatial resolution with regard to both meteorology and chemistry in CTMs, as grid size becomes finer.

    « less
  2. The importance of fish consumption as the primary pathway of human exposure to mercury and the establishment of fish consumption advisories to protect human health have led to large fish tissue monitoring programs worldwide. Data on fish tissue mercury concentrations collected by state, tribal, and provincial governments via contaminant monitoring programs have been compiled into large data bases by the U.S. Environmental Protection Agency’s Great Lakes National Monitoring Program Office (GLNPO), the Ontario Ministry of the Environment’s Fish Contaminants Monitoring and Surveillance Program (FMSP), and many others. These data have been used by a wide range of governmental and academic investigators worldwide to examine long-term and recent trends in fish tissue mercury concentrations. The largest component of the trend literature is for North American freshwater species important in recreational fisheries. This review of temporal trends in fish tissue mercury concentrations focused on published results from freshwater fisheries of North America as well as marine fisheries worldwide. Trends in fish tissue mercury concentrations in North American lakes with marked overall decreases were reported over the period 1972–2016. These trends are consistent with reported mercury emission declines as well as trends in wet deposition across the U.S. and Canada. More recently, amore »leveling-off in the rate of decreases or increases in fish tissue mercury concentrations has been reported. Increased emissions of mercury from global sources beginning between 1990 and 1995, despite a decrease in North American emissions, have been advanced as an explanation for the observed changes in fish tissue trends. In addition to increased atmospheric deposition, the other factors identified to explain the observed mercury increases in the affected fish species include a systematic shift in the food-web structure with the introduction of non-native species, creating a new or expanding role for sediments as a net source for mercury. The influences of climate change have also been identified as contributing factors, including considerations such as increases in temperature (resulting in metabolic changes and higher uptake rates of methylmercury), increased rainfall intensity and runoff (hydrologic export of organic matter carrying HgII from watersheds to surface water), and water level fluctuations that alter either the methylation of mercury or the mobilization of monomethylmercury. The primary source of mercury exposure in the human diet in North America is from the commercial fish and seafood market which is dominated (>90%) by marine species. However, very little information is available on mercury trends in marine fisheries. Most of the data used in the published marine trend studies are assembled from earlier reports. The data collection efforts are generally intermittent, and the spatial and fish-size distribution of the target species vary widely. As a result, convincing evidence for the existence of fish tissue mercury trends in marine fish is generally lacking. However, there is some evidence from sampling of large, longlived commercially-important fish showing both lower mercury concentrations in the North Atlantic in response to reduced anthropogenic mercury emission rates in North America and increases in fish tissue mercury concentrations over time in the North Pacific in response to increased mercury loading.« less
  3. Abstract Background

    Household air pollution (HAP) from cooking with solid fuels has adverse health effects. REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) was a randomized cookstove intervention study that aimed to determine the effects of two types of “improved” biomass cookstoves on health using self-reported health symptoms and biomarkers of systemic inflammation from dried blood spots for female adult cooks and children, and anthropometric growth measures for children only.


    Two hundred rural households were randomized into four different cookstove groups. Surveys and health measurements were conducted at four time points over a two-year period. Chi-square tests were conducted to determine differences in self-reported health outcomes. Linear mixed models were used to assess the effect of the stoves on inflammation biomarkers in adults and children, and to assess the z-score deviance for the anthropometric data for children.


    We find some evidence that two biomarkers of oxidative stress and inflammation, serum amyloid A and C-reactive protein, decreased among adult primary cooks in the intervention groups relative to the control group. We do not find detectable impacts for any of the anthropometry variables or self-reported health.


    Overall, we conclude that the REACCTING intervention did not substantially improve themore »health outcomes examined here, likely due to continued use of traditional stoves, lack of evidence of particulate matter emissions reductions from “improved” stoves, and mixed results for HAP exposure reductions.

    Clinical trial registry Institutes of Health); Trial Registration Number:NCT04633135; Date of Registration: 11 November 2020 – Retrospectively registered.


    « less
  4. Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the currentmore »literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

    « less
  5. In recent years, air pollution has caused more than 1 million deaths per year in China, making it a major focus of public health efforts. However, future climate change may exacerbate such human health impacts by increasing the frequency and duration of weather conditions that enhance air pollution exposure. Here, we use a combination of climate, air quality, and epidemiological models to assess future air pollution deaths in a changing climate under Representative Concentration Pathway 4.5 (RCP4.5). We find that, assuming pollution emissions and population are held constant at current levels, climate change would adversely affect future air quality for >85% of China’s population (∼55% of land area) by the middle of the century, and would increase by 3% and 4% the population-weighted average concentrations of fine particulate matter (PM2.5) and ozone, respectively. As a result, we estimate an additional 12,100 and 8,900 Chinese (95% confidence interval: 10,300 to 13,800 and 2,300 to 14,700, respectively) will die per year from PM2.5 and ozone exposure, respectively. The important underlying climate mechanisms are changes in extreme conditions such as atmospheric stagnation and heat waves (contributing 39% and 6%, respectively, to the increase in mortality). Additionally, greater vulnerability of China’s aging population willmore »further increase the estimated deaths from PM2.5 and ozone in 2050 by factors of 1 and 3, respectively. Our results indicate that climate change and more intense extremes are likely to increase the risk of severe pollution events in China. Managing air quality in China in a changing climate will thus become more challenging.« less