skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ring-and-Lock Interactions in Self-Healable Styrenic Copolymers
Commodity copolymers offer many useful applications, and their durability is critical in maintaining desired functions and retaining sustainability. These studies show that primarily alternating styrene/n-butyl acrylate [p(Sty/nBA)] copolymers self-heal without external intervention when monomer molar ratios are within the 45:55–53:47 range. This behavior is attributed to the favorable interchain interactions between aliphatic nBA side groups being sandwiched by aromatic rings forming ring-and-lock associations driven by pi–sigma–pi (π–σ–π) interactions. Guided by molecular dynamics (MD) simulations combined with spectroscopic and thermomechanical analysis, the ring-and-lock interchain van der Waals forces between π orbitals of aromatic rings and sigma components of aliphatic side groups are responsible for self-healing. Despite the frequent occurrence of these interactions in biological systems (proteins, nucleic acids, lipids, and polysaccharides), these largely unexplored weak and ubiquitous molecular forces between the soft acid aliphatic and soft base aromatic electrons may be valuable assets in the development of polymeric materials with sustainable properties.  more » « less
Award ID(s):
2003005
PAR ID:
10409066
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the American Chemical Society
ISSN:
0002-7863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Previous studies have shown that copolymer compositions can significantly impact self-healing properties. This was accomplished by enhancement of van der Waals (vdW) forces which facilitate self-healing in relatively narrow copolymer compositional range. In this work we report the acceleration of self-healing in alternating/random hydrophobic acrylic-based copolymers in the presence of confined water molecules. Under these conditions competing vdW interactions do not allow H 2 O-diester H-bonding, thus forcing nBA side groups to adapt L-shape conformations, generating stronger dipole-dipole interactions resulting in shorter inter-chain distances compared to ‘key-and-lock’ associations without water. The perturbation of vdW forces upon mechanical damage in the presence of controllable amount of confined water is energetically unfavorable leading the enhancement of self-healing efficiency of hydrophobic copolymers by a factor of three. The concept may be applicable to other self-healing mechanisms involving reversible covalent bonding, supramolecular chemistry, or polymers with phase-separated morphologies. 
    more » « less
  2. Abstract Commodity aliphatic and aromatic acrylic‐based copolymers self‐heal due to ubiquitouskey‐and‐lock,ring‐and‐lock, andfluorophilic‐σ‐lockvan der Waals (vdW) interactions. However, the role of these interactions in the presence of covalently copolymerized ionic liquid (IL) is not known. This study is driven by the hypothesis that covalently incorporated cation–anion pairs to form poly(ionic liquid) copolymers (PILCs) can perturb inter‐ or intra‐chain vdW interactions reflected in mechanical and electrical responses. To test this hypothesis, we synthesized a series of PILCs comprising of pentafluorostyrene (PFS) and imidazolium‐based IL monomers with variable‐length aliphatic tails (methyl and butyl). Using a combination of 2D1H‐1H and19F ‐19F NOESY NMR and FTIR measurements supplemented by molecular dynamic (MD) simulations, these studies demonstrate that preferentially alternating/random PILCs topologies facilitate self‐healing. The introduction of cation–anion moieties modifies thefluorophilic‐σ‐lockinteractions and, along with longer aliphatic tails ─(CH2)3CH3covalently attached to the imidazolium cation, enhances cation‐anion mobility, thus faster recovery from mechanical damage occurs. These findings underline how precise control over dipolar and ionic interactions through copolymer composition enables self‐healing in PILCs. These insights may open pathways for designing sustainable, mechanically resilient materials for applications in energy storage and energy harvesting. 
    more » « less
  3. For heat conduction along polymer chains, a decrease in the axial thermal conductivity often occurs when the polymer structure changes from one-dimensional (1D) to three-dimensional (3D). For example, a single extended aliphatic chain (e.g., polyethylene or poly(dimethylsiloxane)) usually has a higher axial thermal conductivity than its double-chain or crystal counterparts because coupling between chains induces strong interchain anharmonic scatterings. Intuitively, for chains with an aromatic backbone, the even stronger π–π stacking, once formed between chains, should enhance thermal transport across chains and suppress the thermal conductivity along the chains. However, we show that this trend is the opposite in poly(p-phenylene) (PPP), a typical chain with an aromatic backbone. Using molecular dynamics simulations, we found that the axial thermal conductivity of PPP chains shows an anomalous dimensionality dependence where the thermal conductivity of double-chain and 3D crystal structures is higher than that of a 1D single chain. We analyzed the probability distribution of dihedral angles and found that π–π stacking between phenyl rings restricts the free rotation of phenyl rings and forms a long-range order along the chain, thus enhancing thermal transport along the chain direction. Though possessing a stronger bonding strength and stabilizing the multiple-chain structure, π–π stacking does not lead to a higher interchain thermal conductance between phenyl rings compared with that between aliphatic chains. Our simulation results on the effects of π–π stacking provide insights to engineer thermal transport in polymers at the molecular level. 
    more » « less
  4. We report here the synthesis, characterization, and crystal structures of three perfluoropropylated dibenzo[ a , c ]phenazine constitutional isomers, in which the only difference among them was the positions of the perfluoropropyl substituents. The crystal structures of these perfluropropylated dibenzo[ a , c ]phenazine isomers indicated that the stereo-electronic effect of the perfluoropropyl group on the dibenzo[ a , c ]phenazine molecule plays a crucial role in determining the crystal-packing motif in the solid state. Our results from both X-ray crystallography and computational approaches revealed that the positions of the perfluoropropyl groups on the dibenzo[ a , c ]phenazine ring significantly affected the electrostatic potential distribution along the aromatic ring surface, resulting in drastic changes in the molecular packing in the solid state, from herringbone to lamellar crystal packing, among these three constitutional isomers. Simple topological consideration of the molecular packing in the solid state was coincidently cooperative with the changes in the electrostatic potential distributions, where localized partial positive and partial negative charges perhaps dominated the intermolecular interactions between the aromatic rings. Together, the perfluoropropylation on the dibenzo[ a , c ]phenazine ring provided us with a fortunate scenario, wherein the molecular topological structure and electrostatic potential worked together to facilitate the formation of the desired lamellar π–π stacked crystal packing. Meanwhile, electrochemistry, UV-visible absorption and emission spectra, and the computational chemistry results pointed out that there were only minor to moderate changes in the electronic properties of the molecules upon changing the position of the perfluoroalkylation on the dibenzo[ a , c ]phenazine core. While controlling the solid-state structure of aromatics by design still has a long way to go, we hope that our work will ignite a spark that can potentially spread into the field of the design of organic solid-state materials. 
    more » « less
  5. Substituent–π interactions associated with aromatic stacking interactions were experimentally measured using a small N -phenylimide molecular balance model system. The direct interaction of the substituent (NH 2 , CH 3 , OH, F, Br, CF 3 and NO 2 ) with an aromatic ring was measured in the absence of the aromatic stacking interactions in solution. The measured substituent–π energies were found to correlate well with the Hammett σ m parameter similar to the substituent effects observed in aromatic stacking systems. The persistent electrostatic trends in substituent effects can arise from the direct electrostatic interactions between substituents and opposing π-systems. 
    more » « less