We study the geometry of smooth projective surfaces defined by Frobenius forms, a class of homogenous polynomials in prime characteristic recently shown to have minimal possible F-pure threshold among forms of the same degree. We call these surfaces extremal surfaces, and show that their geometry is reminiscent of the geometry of smooth cubic surfaces, especially non-Frobenius split cubic surfaces. For instance, extremal surfaces have many lines but no triangles, hence many “star points” analogous to Eckardt points on a cubic surface. We generalize the classical notion of a double six for cubic surfaces to a double 2d on an extremal surface of degree d. We show that, asymptotically in d, smooth extremal surfaces have at least (1/16)d^{14} double 2d's. A key element of the proofs is the large automorphism group of an extremal surface, which we show to act transitively on many associated sets, such as the set of triples of skew lines on the extremal surface.
more »
« less
Lower bounds on the F-pure threshold and extremal singularities
We prove that if f f is a reduced homogeneous polynomial of degree d d , then its F F -pure threshold at the unique homogeneous maximal ideal is at least 1 d − 1 \frac {1}{d-1} . We show, furthermore, that its F F -pure threshold equals 1 d − 1 \frac {1}{d-1} if and only if f ∈ m [ q ] f\in \mathfrak m^{[q]} and d = q + 1 d=q+1 , where q q is a power of p p . Up to linear changes of coordinates (over a fixed algebraically closed field), we classify such “extremal singularities”, and show that there is at most one with isolated singularity. Finally, we indicate several ways in which the projective hypersurfaces defined by such forms are “extremal”, for example, in terms of the configurations of lines they can contain.
more »
« less
- Award ID(s):
- 1945611
- PAR ID:
- 10409081
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society, Series B
- Volume:
- 9
- Issue:
- 31
- ISSN:
- 2330-0000
- Page Range / eLocation ID:
- 977 to 1005
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem.more » « less
-
Let $$\Omega_q$$ denote the set of proper $[q]$-colorings of the random graph $$G_{n,m}, m=dn/2$$ and let $$H_q$$ be the graph with vertex set $$\Omega_q$$ and an edge $$\set{\s,\t}$$ where $$\s,\t$$ are mappings $$[n]\to[q]$$ iff $$h(\s,\t)=1$$. Here $$h(\s,\t)$$ is the Hamming distance $$|\set{v\in [n]:\s(v)\neq\t(v)}|$$. We show that w.h.p. $$H_q$$ contains a single giant component containing almost all colorings in $$\Omega_q$$ if $$d$$ is sufficiently large and $$q\geq \frac{cd}{\log d}$$ for a constant $c>3/2$.more » « less
-
Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p , q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.more » « less
-
We develop discrete $$W^2_p$$-norm error estimates for the Oliker--Prussner method applied to the Monge--Ampère equation. This is obtained by extending discrete Alexandroff estimates and showing that the contact set of a nodal function contains information on its second-order difference. In addition, we show that the size of the complement of the contact set is controlled by the consistency of the method. Combining both observations, we show that the error estimate $$\| u - u_h \|_{W^2_{f,p}} (\mathcal{N}^I_h)$$ converges in order $$O(h^{1/p})$$ if $p > d$ and converges in order $$O(h^{1/d} \ln (\frac 1 h)^{1/d})$$ if $$p \leq d$$, where $$\|\cdot\|_{W^2_{f,p}(\mathcal{N}^I_h)}$$ is a weighted $$W^2_p$$-type norm, and the constant $C>0$ depends on $$\|{u}\|_{C^{3,1}(\bar\Omega)}$$, the dimension $$d$$, and the constant $$p$$. Numerical examples are given in two space dimensions and confirm that the estimate is sharp in several cases.more » « less
An official website of the United States government

